Exercise Sheet no. 9

Exercise 1 (4 points).
Consider a Riemannian product $(M, g)=\left(M_{1} \times M_{2}, \operatorname{pr}_{1}^{*} g_{1}+\operatorname{pr}_{2}^{*} g_{2}\right)$ of two Riemannian manifolds $\left(M_{1}, g_{1}\right)$ and (M_{2}, g_{2}). Calculate its Riemann curvature tensor as well as its Ricci and scalar curvature in terms of the curvatures of the factors.
Hint: Start by determining $\nabla_{X_{i}}^{g} Y_{j}$ for vector fields $X_{i}, Y_{j} \in \Gamma(T M)$ with $X_{i}\left(p_{1}, p_{2}\right)=$ $\hat{X}_{i}\left(p_{i}\right) \in T_{p_{i}} M_{i} \subset T_{\left(p_{1}, p_{2}\right)} M$ etc. for $\hat{X}_{i} \in \Gamma\left(T M_{i}\right), \hat{Y}_{j} \in \Gamma\left(T M_{j}\right)$ and $i, j=1,2$.

Exercise 2 (4 points).
Let $M=Q \times\left(T^{k} \backslash\{p\}\right)$ and $\hat{M}=Q \times T^{k}$ be Riemannian products, where Q is a compact Riemannian manifold, T^{k} is the k-dimensional standard torus for some $k \geq 2$ and $p \in T^{k}$. Assume that $u \in L^{q}(M)$ is a weak solution of $\Delta u=\rho$ on M, where $\rho \in C^{\infty}(\hat{M})$. Determine the values of $q \in[1, \infty]$ for which this implies that u is the restriction of a function in $C^{\infty}(\hat{M})$, satisfying $\Delta u=\rho$ in the classical sense on all of \hat{M}. When this is the case, please provide a proof. When this is not the case, provide a counterexample of functions $u \in L^{q}(M)$ and $\rho \in C^{\infty}(\hat{M})$ as above, where u does not extend to a smooth function on \hat{M}. Hint: Consider functions $u(x)=d_{Q}(x)^{\alpha} \chi\left(d_{Q}(x)\right)$, where d_{Q} is the distance from $Q \times\{p\}$, $\alpha \in \mathbb{R}$ and χ is a suitable cut-off function.

Exercise 3 (4 points).
Let (M, g) be a compact Riemannian manifold and h a smooth function on M.
a) Let $c<\min _{p \in M} h(p)$. Prove that $\Delta+h-c: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is invertible and that for any $k, l \in \mathbb{Z}$ (they may be negative!) there is a unique Hilbert space isomorphism $(\Delta+h-c)^{k}: H^{2 l}(M) \rightarrow H^{2 l-2 k}(M)$ extending $(\Delta+h-c)^{k}: C^{\infty}(M) \rightarrow C^{\infty}(M)$.
b) Let $u \in H^{-\infty}(M)$ and $k \in \mathbb{Z}$. Show that $u \in H^{2 k}(M)$ if and only if there is a sequence $\left(u_{j}\right)_{j \in \mathbb{N}}$ of eigenfunctions of $\Delta+h$ associated to distinct eigenvalues $\left(\lambda_{j}\right)_{j \in \mathbb{N}_{0}}$ such that

$$
\sum_{j=0}^{\infty}\left(\lambda_{j}^{2}+1\right)^{k}\left\|u_{j}\right\|_{L^{2}(M)}^{2}<\infty \quad \text { and } \quad \sum_{j=0}^{n} u_{j} \xrightarrow{n \rightarrow \infty} u \quad \text { in } H^{-\infty}(M)
$$

Exercise 4 (4 points).
Let (M_{1}, g_{1}) and (M_{2}, g_{2}) be two Riemannian manifolds of dimensions n_{1} and n_{2}, respectively, and $(M, g)=\left(M_{1} \times M_{2}, \operatorname{pr}_{1}^{*} g_{1}+\operatorname{pr}_{2}^{*} g_{2}\right)$ be their Riemannian product of dimension $n=n_{1}+n_{2}$. We denote by K, R, W, ric, ric ${ }^{0}$ and scal the sectional, Riemann, Weyl, Ricci, trace-free Ricci1 and scalar curvature of (M, g), respectively, and add a subscript i when referring to the respective curvature of $\left(M_{i}, g_{i}\right)$ for $i=1,2$.
a) Show that in general $\operatorname{ric}^{0} \neq \mathrm{pr}_{1}^{*} \operatorname{ric}_{1}^{0}+\mathrm{pr}_{2}^{*}$ ric $_{2}^{0}$ and give a criterion for equality.
b) Verify the following formula for the Weyl curvature:

$$
W=R-\frac{1}{n-2} \operatorname{ric} \otimes g+\frac{1}{2(n-1)(n-2)} \text { scal } g \otimes g .
$$

[^0]c) Conclude that $W \equiv 0$ if (M_{1}, g_{1}) and (M_{2}, g_{2}) have constant sectional curvature and $K_{1}=-K_{2}$.
d) Show the converse: If $W \equiv 0$, then $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ have constant sectional curvature and $K_{1}=-K_{2}$.
Hint: Start by looking at $W\left(X_{1}, Y_{2}, Z_{2}, \hat{X}_{1}\right)$, where $X_{1}, \hat{X}_{1} \in T M_{1} \subset T M$ and $Y_{2}, Z_{2} \in$ $T M_{2} \subset T M$, and deduce $\operatorname{ric}_{1}^{0}=\operatorname{ric}_{2}^{0}=0$ as well as $\left(\frac{1}{n_{1}}-\frac{1}{n-1}\right) \operatorname{scal}_{1}+\left(\frac{1}{n_{2}}-\frac{1}{n-1}\right)$ scal $_{2}=0$.

[^0]: ${ }^{1}$ In the script we used B instead of ric ${ }^{0}$ for the trace-free Ricci curvature

