

Exercise Sheet no. 8

Exercise 1 (4 points).

Consider a Riemannian manifold (M, g) and a vector bundle $V \to M$ with fiberwise scalar product and compatible connection ∇ . The connection defines an order one differential operator $\nabla: \Gamma(V) \to \Gamma(T^*M \otimes V)$

- a) Show that the formal adjoint of ∇ is given by $\nabla^* = -(\operatorname{tr}^g \otimes \operatorname{id}_V) \circ \nabla^{T^*M \otimes V}$, where $\nabla^{T^*M \otimes V}$ is the connection on $T^*M \otimes V$ induced by the Levi-Civita connection on T^*M and the connection on V.
- b) In the case $V = \bigwedge^k T^*M$ with induced metric and Levi-Civita connection, we define the connection Laplacian by $\Delta_k = \nabla^* \nabla : \Omega^k(M) \to \Omega^k(M)$. Show that $\Delta_1 \circ \nabla - \nabla \circ \Delta_0 : C^{\infty}(M) \to \Omega^1(M)$ is a differential operator of order ≤ 2 .

Exercise 2 (4 points).

Let (M,g) be a Riemannian manifold of dimension n > 2. Inside $(T^*M)^{\otimes 4} \to M$, we consider the subbundle of formal curvature tensors $\mathcal{K}(TM) \to M$, consisting of those $R \in (T_p^*M)^{\otimes 4}$, for any $p \in M$, with

$$R(X, Y, Z, W) = -R(Y, X, Z, W) = R(Z, W, X, Y) = -R(Y, Z, X, W) - R(Z, X, Y, W)$$

for all $X, Y, Z, W \in T_p M$. This bundle carries a metric induced by g. We define the Kulkarni-Nomizu product¹

$$(T^*M)^{\odot 2} \odot (T^*M)^{\odot 2} \to \mathcal{K}(TM)$$
$$h \odot k \mapsto h \otimes k,$$

where for $h, k \in (T_p^* M)^{\otimes 2}$ and all $X, Y, Z, W \in T_p M$

$$h \otimes k(X, Y, Z, W) \coloneqq h(X, W)k(Y, Z) + h(Y, Z)k(X, W)$$
$$-h(X, Z)k(Y, W) - h(Y, W)k(X, Z).$$

Consider the linear bundle maps

$$\pi^{\text{scal}}: \mathcal{K}(TM) \to \mathbb{R} \qquad \pi^{\text{ric}}: \ker(\pi^{\text{scal}}) \to (T^* M^{\odot 2})_0$$
$$R \mapsto \sum_{i,j=1\dots n} R(e_i, e_j, e_j, e_i) \qquad R \mapsto \sum_{i=1}^n R(e_i, -, -, e_i),$$

where e_1, \ldots, e_n is any orthonormal basis of T_pM for suitable $p \in M$ and $(T^*M^{\odot 2})_0$ is the bundle of trace-free symmetric 2-tensors. Let us furthermore define $\mathcal{K}_0(TM) \coloneqq \ker(\pi^{\mathrm{scal}})$ and $\mathcal{W}(TM) \coloneqq \ker(\pi^{\mathrm{ric}})$.

a) Show that the orthogonal complement of $\mathcal{K}_0(TM)$ in $\mathcal{K}(TM)$ is spanned by $g \otimes g$ and that the restriction $\pi^{\text{scal}}: \mathcal{K}_0(TM)^{\perp} \to \mathbb{R}$ is an isomorphism.

¹Convince yourself that this is well-defined!

- b) Show that the orthogonal complement of $\mathcal{W}(TM)$ in $\mathcal{K}_0(TM)$ is spanned by $\{\operatorname{ric} \otimes g \mid \operatorname{ric} \in \mathcal{K}_0(TM)\}\$ and that the restriction $\pi^{\operatorname{ric}}:\mathcal{K}_0(TM) \supset \mathcal{W}(TM)^{\perp} \to (T^*M^{\odot 2})_0$ is an isomorphism.
- c) Conclude that there are orthogonal decompositons

$$\mathcal{K}(TM) = \mathcal{W}(TM) \oplus ((T^*M^{\otimes 2})_0 \otimes g) \oplus (g \otimes g)\mathbb{R}$$
(1)

$$= \mathcal{W}(TM) \oplus (T^*M^{\odot 2} \otimes g).$$
⁽²⁾

Remark: Since the Riemann curvature tensor R is a section of $\mathcal{K}(TM) \to M$, it may be decomposed with respect to (1) and (2). In both cases, the $\mathcal{W}(TM)$ -part is the *Weyl* curvature $W \in \Gamma(\mathcal{W}(TM))$. The other pieces are the trace-free part of the Ricci curvature and the scalar curvature as well as the Ricci curvature, respectively.