Exercise Sheet no. 8

Exercise 1 (4 points).
Consider a Riemannian manifold (M, g) and a vector bundle $V \rightarrow M$ with fiberwise scalar product and compatible connection ∇. The connection defines an order one differential operator $\nabla: \Gamma(V) \rightarrow \Gamma\left(T^{*} M \otimes V\right)$
a) Show that the formal adjoint of ∇ is given by $\nabla^{*}=-\left(\operatorname{tr}^{g} \otimes \mathrm{id}_{V}\right) \circ \nabla^{T^{*} M \otimes V}$, where $\nabla^{T^{*}} M \otimes V$ is the connection on $T^{*} M \otimes V$ induced by the Levi-Civita connection on $T^{*} M$ and the connection on V.
b) In the case $V=\wedge^{k} T^{*} M$ with induced metric and Levi-Civita connection, we define the connection Laplacian by $\Delta_{k}=\nabla^{*} \nabla: \Omega^{k}(M) \rightarrow \Omega^{k}(M)$. Show that $\Delta_{1} \circ \nabla-\nabla \circ$ $\Delta_{0}: C^{\infty}(M) \rightarrow \Omega^{1}(M)$ is a differential operator of order ≤ 2.

Exercise 2 (4 points).
Let (M, g) be a Riemannian manifold of dimension $n>2$. Inside $\left(T^{*} M\right)^{\otimes 4} \rightarrow M$, we consider the subbundle of formal curvature tensors $\mathcal{K}(T M) \rightarrow M$, consisting of those $R \in\left(T_{p}^{*} M\right)^{\otimes 4}$, for any $p \in M$, with

$$
R(X, Y, Z, W)=-R(Y, X, Z, W)=R(Z, W, X, Y)=-R(Y, Z, X, W)-R(Z, X, Y, W)
$$

for all $X, Y, Z, W \in T_{p} M$. This bundle carries a metric induced by g. We define the Kulkarni-Nomizu produc ${ }^{\text {¹ }}$

$$
\begin{aligned}
\left(T^{*} M\right)^{\odot 2} \odot\left(T^{*} M\right)^{\odot 2} & \rightarrow \mathcal{K}(T M) \\
h \odot k & \mapsto h \oplus k,
\end{aligned}
$$

where for $h, k \in\left(T_{p}^{*} M\right)^{\odot 2}$ and all $X, Y, Z, W \in T_{p} M$

$$
\begin{aligned}
h \otimes k(X, Y, Z, W) & :=h(X, W) k(Y, Z)+h(Y, Z) k(X, W) \\
& -h(X, Z) k(Y, W)-h(Y, W) k(X, Z) .
\end{aligned}
$$

Consider the linear bundle maps

$$
\begin{aligned}
\pi^{\text {scal }}: \mathcal{K}(T M) & \rightarrow \mathbb{R} & \pi^{\mathrm{ric}}: \operatorname{ker}\left(\pi^{\mathrm{scal}}\right) & \rightarrow\left(T^{*} M^{\odot 2}\right)_{0} \\
R & \mapsto \sum_{i, j=1 \ldots . .} R\left(e_{i}, e_{j}, e_{j}, e_{i}\right) & R & \mapsto \sum_{i=1}^{n} R\left(e_{i},-,-, e_{i}\right),
\end{aligned}
$$

where e_{1}, \ldots, e_{n} is any orthonormal basis of $T_{p} M$ for suitable $p \in M$ and $\left(T^{*} M^{\odot}\right)_{0}$ is the bundle of trace-free symmetric 2-tensors. Let us furthermore define $\mathcal{K}_{0}(T M):=\operatorname{ker}\left(\pi^{\text {scal }}\right)$ and $\mathcal{W}(T M):=\operatorname{ker}\left(\pi^{\mathrm{ric}}\right)$.
a) Show that the orthogonal complement of $\mathcal{K}_{0}(T M)$ in $\mathcal{K}(T M)$ is spanned by $g \otimes g$ and that the restriction $\pi^{\text {scall }} \mathcal{K}_{0}(T M)^{\perp} \rightarrow \mathbb{R}$ is an isomorphism.

[^0]b) Show that the orthogonal complement of $\mathcal{W}(T M)$ in $\mathcal{K}_{0}(T M)$ is spanned by $\{$ ric $\otimes g \mid$ ric $\left.\in \mathcal{K}_{0}(T M)\right\}$ and that the restriction $\pi^{\text {ric: }} \mathcal{K}_{0}(T M) \supset \mathcal{W}(T M)^{\perp} \rightarrow\left(T^{*} M^{\odot 2}\right)_{0}$ is an isomorphism.
c) Conclude that there are orthogonal decompostions
\[

$$
\begin{align*}
\mathcal{K}(T M) & =\mathcal{W}(T M) \oplus\left(\left(T^{*} M^{\odot 2}\right)_{0} \oplus g\right) \oplus(g \oplus g) \mathbb{R} \tag{1}\\
& =\mathcal{W}(T M) \oplus\left(T^{*} M^{\odot 2} \oplus g\right) . \tag{2}
\end{align*}
$$
\]

Remark: Since the Riemann curvature tensor R is a section of $\mathcal{K}(T M) \rightarrow M$, it may be decomposed with respect to (1) and (22). In both cases, the $\mathcal{W}(T M)$-part is the Weyl curvature $W \in \Gamma(\mathcal{W}(T M))$. The other pieces are the trace-free part of the Ricci curvature and the scalar curvature as well as the Ricci curvature, respectively.

[^0]: ${ }^{1}$ Convince yourself that this is well-defined!

