

Exercise Sheet no. 7

Exercise 1 (4 points).

Let (M,g) be a Riemannian manifold of dimension n and $L: C^{\infty}(M) \to C^{\infty}(M)$ a linear map. Show that the following are equivalent:

- (i) L is a partial differential operator of order $\leq k$.
- (ii) In any local coordinate system x, defined on $U \subset M$, there exist functions $a_{\alpha_1,\dots,\alpha_n} \in C^{\infty}(U)$ for $\alpha_1,\dots,\alpha_n \in \mathbb{N}$, $\alpha_1 + \dots + \alpha_n \leq k$ such that for all $u \in C^{\infty}(M)$

$$Lu_{|U} = \sum_{\alpha_1 + \dots + \alpha_n \leq k} a_{\alpha_1, \dots, \alpha_n} \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}} u.$$

(iii) There is a family $(F_{\eta})_{\eta \in I}$ consisting of tuples of at most k vector fields $F_{\eta} = (X_{\eta}^{1}, \dots, X_{\eta}^{k_{\eta}})$ and a smooth function $a \in C^{\infty}(M)$ such that the collection of supports $(\operatorname{supp}(X_{\eta}^{1}) \cap \dots \cap \operatorname{supp}(X_{\eta}^{k_{\eta}}))_{n \in I}$ is locally finite and for all $u \in C^{\infty}(M)$

$$Lu = \sum_{\eta \in I} \partial_{X_{\eta}^{1}} \dots \partial_{X_{\eta}^{k_{\eta}}} u + au.$$

Exercise 2 (4 points).

Let (M,g) be a Riemannian manifold and $L: C^{\infty}(M) \to C^{\infty}(M)$ a scalar differential operator of order $\leq k$.

- a) Show that if L admits a formal adjoint, then it is unique.
- b) Consider the scalar differential operator $\partial_X : C^{\infty}(M) \to C^{\infty}(M)$ defined by a vector field $X \in \Gamma(TM)$. Show that ∂_X has a formal adjoint and determine it explicitly. *Hint:* Calculate div(fX) for $f \in C^{\infty}(M)$.
- c) Show that any scalar differential operator L has a formal adjoint. *Hint:* Characterization (iii) from Exercise 1 might be helpful.

Exercise 3 (4 points).

Let (M, g) be a Riemannian manifold, which is not necessarily complete. Show that for any relatively compact open subset $\Omega \in M$, there are sequences $(\tilde{\Omega}_j)_{j \in \mathbb{N}}$ and $(\Omega_j)_{j \in \mathbb{N}}$ of relatively compact open subsets such that

$$\Omega \in \tilde{\Omega}_0 \in \tilde{\Omega}_1 \in \cdots \in \bigcup_{j \in \mathbb{N}} \tilde{\Omega}_j \in M \qquad \text{ and } \qquad \Omega \in \bigcap_{j \in \mathbb{N}} \Omega_j \in \cdots \in \Omega_1 \in \Omega_0 \in M.$$

Exercise 4 (4 points).

We consider the equation $(\Delta + h)u = f$ on a Riemannian manifold (M, g) for a fixed smooth function $h \in C^{\infty}(M)$. Assume that $u \in L^q(M)$ for $1 < q < \infty$ and the function fon the right hand side is $C^{k,\alpha}$, for some $k \in \mathbb{N}$ and $0 < \alpha < 1$, with $||f||_{C^{k,\alpha}(M)} < \infty$. Show that u has a representative in $C^{k+2,\alpha}$ and for any relatively compact open subset $\Omega \in M$ an estimate

$$\|u_{|\Omega}\|_{C^{k+2,\alpha}(\Omega)} \le C \cdot \left(\|f\|_{C^{k,\alpha}(M)} + \|u\|_{L^{q}(M)}\right)$$

holds, where the constant $C \in \mathbb{R}$ is independent of u and f.