

Exercise Sheet no. 6

Exercise 1 (4 points).

Consider the manifold with boundary $M = S^1 \times \mathbb{R}_{\geq 0}$ together with its standard volume element dvol. Construct vector fields $X \in \Gamma(T(S^1 \times \mathbb{R}_{\geq 0}))$ such that their divergence $\operatorname{div}(X) = -\delta(X^{\flat})$ has compact support and such that:

a) $\int_{S^1 \times \mathbb{R}_{\ge 0}} \operatorname{div}(X) \operatorname{dvol} = 0$ and $\int_{S^1 \times \{0\}} X \sqcup \operatorname{dvol} \neq 0$. b) $\int_{S^1 \times \mathbb{R}_{\ge 0}} \operatorname{div}(X) \operatorname{dvol} \neq 0$ and $\int_{S^1 \times \{0\}} X \sqcup \operatorname{dvol} = 0$.

Why do these examples not contradict the divergence theorem of Gauß?

Exercise 2 (4 points).

Let (M, g) be a Riemannian manifold, $p \in M$ and $V, W \in T_p M$. Consider the Jacobi field $J_W(t) \coloneqq \frac{d}{ds}_{|s=0} \exp_p((V + sW)t)$ along the geodesic $c(t) = \exp_p(tV)$. Recall that J_W is subject to the Jacobi field equation $\frac{\nabla^2}{dt^2} J_W(t) + R(J_W(t), \dot{c}(t))\dot{c}(t) = 0$ and the pull-back connection satisfies:

- $\frac{\mathrm{d}}{\mathrm{d}t}g(X(t),Y(t)) = g(\frac{\nabla}{\mathrm{d}t}X(t),Y(t)) + g(X(t),\frac{\nabla}{\mathrm{d}t}Y(t))$ for any vector fields X, Y along c.
- $\frac{\nabla}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}s}c(s,t) = \frac{\nabla}{\mathrm{d}s}\frac{\mathrm{d}}{\mathrm{d}t}c(s,t)$, where $c: U \to M, U \subset \mathbb{R}^2$ open, and the pull-back connections differentiate along the curves $t \mapsto c(s,t)$ and $s \mapsto c(s,t)$, respectively.

Show that

$$g(J_W(t), J_W(t)) = t^2 g(W, W) - \frac{1}{3} g(R(W, V)V, W)t^4 + \mathcal{O}(t^5).$$

Exercise 3 (4 points).

Let (M, g) be a compact *n*-dimensional Riemannian manifold. For a continuous function $w: M \to \mathbb{R}$ and some $p \in [2, \frac{2n}{n-2}]$, we define the functional

$$\mathcal{F}(u) = \frac{\int_M (|\nabla u|^2 + wu^2) \operatorname{dvol}}{\|u\|_{L^p}^2},$$

where $u \in H^{1,2}(M) \setminus \{0\}$.

- a) Show that the functions u under consideration are in L^p , thus verifying well-definedness of \mathcal{F} . Also check that \mathcal{F} is invariant under rescaling u by a parameter λ .
- b) Prove that $\inf \mathcal{F} > -\infty$ in general and $\inf \mathcal{F} > 0$ if w > 0.

Assume in addition that $p < \frac{2n}{n-2}$.

c) Show that \mathcal{F} is weakly lower-semicontinuous, i. e. for every weakly convergent sequence $u_n \rightharpoonup u$ in $H^{1,2}(M) \smallsetminus \{0\}$

$$\liminf_{n\to\infty}\mathcal{F}(u_n)\geq\mathcal{F}(u).$$

Hint: You may use without proof that weakly convergent sequences are bounded (e.g. Werner, Funktionalanalysis, 4. Auflage, Korollar IV.2.3).

d) Prove that there is some $u_0 \in H^{1,2}(M) \setminus \{0\}$ such that $\mathcal{F}(u_0) = \inf \mathcal{F}$. *Hint:* You may use without proof that in reflexive Banach spaces (such as the Hilbert space $H^{1,2}(M)$) norm balls are weakly compact, i. e. bounded sequences have weakly convergent subsequences.

Exercise 4 (4 points).

Let (M, g) be a compact *n*-dimensional Riemannian manifold. For a continuous function $w: M \to \mathbb{R}$ and some $p \in [2, \frac{2n}{n-2}]$, we again consider the functional

$$\mathcal{F}(u) = \frac{\int_M (|\nabla u|^2 + wu^2) \operatorname{dvol}}{\|u\|_{L^p}^2}$$

defined for all $u \in H^{1,2}(M) \setminus \{0\}$. Show that for $u \in C^{\infty}(M) \setminus \{0\}$, the following are equivalent:

(i) For all $v \in C^{\infty}(M)$, one has

$$\left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0}\mathcal{F}(u+tv)=0.$$

(ii) There is a constant $c \in \mathbb{R}$ with

$$\Delta u + wu = c|u|^{p-2}u.$$

Additionally, if one and hence both of the equivalent conditions are satisfied, express the constant c in terms of $\mathcal{F}(u)$ and $||u||_{L^p}$.