Exercise Sheet no. 4

Exercise 1 (4 points).
Let (M, d) be a compact metric space and $\mathcal{A} \subset C(M)$ a set of continuous functions. Show that \mathcal{A} is equicontinuous if and only if it is uniformly equicontinuous.

Exercise 2 (4 points).
Let (M, g) be a Riemannian manifold and $p \in M$ a point. We consider Riemannian normal coordinates $\phi: U \rightarrow V \subset \mathbb{R}^{n}$ centered at $p(i$. e. $\phi(p)=0)$.
a) For any $v_{0} \in \mathbb{R}^{n}$, let v be the constant vector field on V with $v(x)=v_{0}$ for all $x \in V$. Show that $X:=\phi^{*}(v) \in \Gamma(T U)$ satisfies $\nabla_{X} X(p)=0$.
b) Consider the Taylor expansions of the metric coefficients at 0 . Deduce that their first order terms vanish, i. e. for all i and j

$$
g_{i j}(x)=\delta_{i j}+\mathcal{O}\left(|x|^{2}\right)
$$

Hint: Exercise 1 on sheet 3.
Exercise 3 (4 points).
Let $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ be the n-dimensional torus. For parameters $k, l \in \mathbb{N}_{0}, p, q \in[1, \infty]$ with $k+l-\frac{n}{q}<k-\frac{n}{p}$ show that the identity on $C^{\infty}\left(T^{n}\right)$ does not extend to a continuous embedding $H^{k+l, q}\left(T^{n}\right) \rightarrow H^{k, p}\left(T^{n}\right)$.
Hint: Look at rescalings of functions as in exercise 2 on sheet 2.
Exercise 4 (4 points).
Let, as in exercise 4 on sheet $2, \mathcal{P}_{k} \subset C^{\infty}\left(\mathbb{R}^{n+1}\right)$ be the vector space of homogeneous polynomial functions of degree k and $\mathcal{H}_{k} \subset \mathcal{P}_{k}$ the subspace of harmonic ones. We write $r^{2}=x_{1}^{2}+\cdots x_{n+1}^{2}$.
a) Argue that $r^{2} p \in \mathcal{P}_{k+2}$ for all $p \in \mathcal{P}_{k}$ and calculate $\Delta\left(r^{2} p\right)$ in terms of p and Δp.
b) Let $j \in \mathbb{N}_{0}$ and $p \in \mathcal{H}_{k-2-2 j}$. Show that $r^{2 j} p$ lies in the image of $\Delta: \mathcal{P}_{k} \rightarrow \mathcal{P}_{k-2}$.
c) Conclude via induction that $\mathcal{P}_{k}=\mathcal{H}_{k} \oplus r^{2} \mathcal{H}_{k-2} \oplus r^{4} \mathcal{H}_{k-4} \oplus \cdots$ and that

$$
0 \longrightarrow \mathcal{H}_{k} \longrightarrow \mathcal{P}_{k} \xrightarrow{\Delta} \mathcal{P}_{k-2} \longrightarrow 0
$$

is short exact.
d) We denote by $\tilde{\mathcal{P}}_{k}$ the image of the (injective) restriction map $\mathcal{P}_{k} \rightarrow C^{\infty}\left(S^{n}\right), p \mapsto p_{\mid S^{n}}$. Show that $\tilde{\mathcal{P}}_{k} \subset \tilde{\mathcal{P}}_{k+2}$ and $\tilde{\mathcal{P}}_{k} \cap \tilde{\mathcal{P}}_{k+1}=0$ for all $k \in \mathbb{N}_{0}$. Deduce that

$$
\tilde{\mathcal{P}}:=\sum_{k \in \mathbb{N}_{0}} \tilde{\mathcal{P}}_{k}=\bigcup_{k^{\prime} \in \mathbb{N}_{0}}\left(\tilde{\mathcal{P}}_{2 k^{\prime}} \oplus \tilde{\mathcal{P}}_{2 k^{\prime}+1}\right) \subset C^{\infty}\left(S^{n}\right) .
$$

Hint: Have a look at the reflection $\mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}, v \mapsto-v$.
e) Conclude that $\tilde{\mathcal{P}} \subset C^{\infty}\left(S^{n}\right)$ decomposes into a direct sum of eigenspaces of $\Delta^{S^{n}}: \tilde{\mathcal{P}} \rightarrow$ $C^{\infty}\left(S^{n}\right)$. Determine the multiplicities of the occuring eigenvalues.

