Exercise Sheet no. 3

Exercise 1 (4 points).
Let (M, g) be a Riemannian manifold and $x: U \rightarrow V \subseteq \mathbb{R}^{n}$ be a chart defined on an open subset $U \subset M$. We denote by $g_{i j}$ the metric coefficients and by $\Gamma_{i j}{ }^{k}$ the Christoffel symbols both with respect to the chart x. For fixed $p \in V$ show that $\frac{\partial g_{i j}}{\partial x^{k}}(p)=0$ for all i, j, k if and only if $\Gamma_{i j}{ }^{k}(p)=0$ for all i, j, k.

Exercise 2 (4 points).
Let $\left(V,\|\cdot\|_{V}\right)$ be a normed vector space and $A \subset V$ a closed subspace. For $x \in V$, set $N(x):=\inf _{a \in A}\|x+a\|_{V}$. Show the following:
a) $N(x)=0$ if and only if $x \in A$.
b) $[x] \mapsto N(x)$ defines a norm on V / A with the property that the quotient map $V \rightarrow$ V / A is continuous.
c) $\operatorname{span}(v) \subset V$ is closed for any $v \in V$.

Assume now that V is complete, $X \subset V$ is a dense subspace and $v \in V \backslash X$. Set $W:=$ $V / \operatorname{span}(v)$ and denote by $\|\cdot\|_{W}$ its norm constructed in the first part of the exercise.
d) Show that the canonical map $X \rightarrow V \rightarrow W$ is injective. Thus X can be identified with a subset of W.
e) Prove that the identity map $\left(X,\|\cdot\|_{V}\right) \rightarrow\left(X,\|\cdot\|_{W}\right)$ is continuous and injective, yet its completion $\bar{X}^{\|\cdot\|_{V}} \rightarrow \bar{X}^{\|\cdot\|_{W}}$ is not injective.

Exercise 3 (4 points).
Prove that the stereographic projection

$$
\begin{aligned}
S^{m} \backslash\left\{(0, \cdots, 0,1)^{T}\right\} & \longrightarrow \mathbb{R}^{m} \\
\binom{\sin (\theta) y}{\cos \theta} & \longmapsto \cot \left(\frac{\theta}{2}\right) y,
\end{aligned}
$$

where $\theta \in(0, \pi]$ and $y \in S^{m-1}$, is a conformal diffeomorphism.
Exercise 4 (4 points).
Let (M, g) be a complete, connected Riemannian manifold. We want to show that $\stackrel{\circ}{H}^{1, p}(M)=$ $H^{1, p}(M)$ for $p \in[1, \infty)$. To this aim, let d_{x} be a smooth function on M that is close to the distance function $d(x, \cdot)$ from a point $x \in M$ in the following sense:

$$
\left\|d_{x}-d(x, \cdot)\right\|_{\infty}<1 \quad \text { and } \quad\left\|\nabla d_{x}\right\|<2
$$

Furthermore, we choose a smooth cut-off function $f: \mathbb{R} \rightarrow[0,1]$ with $f(t)=1$ for $t \leq 0$, $f(t)=0$ for $t \geq 1$ and $\left|f^{\prime}(t)\right|<2$ for all $t \in \mathbb{R}$.
a) Let $u \in H^{1, p}(M)$ be smooth and set $u_{j}(y)=u(y) f\left(d_{x}(y)-j\right)$ for $j \in \mathbb{N}$. Show that $u_{j} \in C_{c}^{\infty}(M)$ for all j and that $u_{j} \rightarrow u$ for $j \rightarrow \infty$ in $H^{1, p}$-norm.
b) Conclude that $\dot{H}^{1, p}(M)=H^{1, p}(M)$.
c) Give examples showing that in general $H^{1, p}(M) \varsubsetneqq H^{1, p}(M)$, both in the case $p=\infty$ and in the case where M is not complete.

