

Exercise Sheet no. 1

Exercise 1 (4 points).

For $\alpha \in \mathbb{Z}^n$ consider the family of complex-valued functions $u_{\alpha} \coloneqq \exp(2\pi i \langle \alpha, x \rangle)$ on the torus $M = \mathbb{R}^n / \mathbb{Z}^n$. Given a family of complex numbers $(a_{\alpha})_{\alpha \in \mathbb{Z}^n}$, show that $\sum_{\alpha \in \mathbb{Z}^n} a_{\alpha} u_{\alpha}$ converges in the Sobolev space $H^{k,2}(M)$, $k \in \mathbb{N}$, if and only if $\sum_{\alpha \in \mathbb{Z}^n} |a_{\alpha}|^2 ||\alpha||^{2k} < \infty$. Argue furthermore that $H^{k,2}(M) = \{\sum_{\alpha \in \mathbb{Z}^n} a_{\alpha} u_{\alpha} | \sum_{\alpha \in \mathbb{Z}^n} |a_{\alpha}|^2 ||\alpha||^{2k} < \infty\}$. *Hint:* You may use Parseval's identity.

Exercise 2 (4 points).

Let (M, g) be a Riemannian manifold of dimension m and ∇ its Levi-Civita connection. For a function $f \in C^{\infty}(M)$ and two vector fields $X, Y \in \Gamma(TM)$, we define $\nabla^2 f(X, Y) \coloneqq \nabla_X \nabla_Y f - \nabla_{\nabla_X Y} f$

a) Show that $\nabla^2 f$ is a well-defined symmetric (0,2)-tensor on M (the Hessian of f).

The Laplace operator of f is defined by $\Delta f = -\operatorname{tr}(\nabla^2 f)$. Suppose that $(M,g) \subset (N,h)$ as a hypersurface with unit normal field ν . Here, g is the metric induced by h. The mean curvature of M in N is $H = \frac{1}{m} \operatorname{tr}(-\nabla^h \nu)$.

b) Show $(\Delta^h f)_{|M} = -(\nabla^{h,2}_{\nu,\nu}f)_{|M} + mH\nabla_\nu f + \Delta^g(f_{|M})$ for all $f \in C^\infty(N)$.