

## Exercises Sheet no. 7

## **1.** Exercise (4 points).

Let (M, g) be a compact *n*-dimensional manifold. For a continuous function  $w: M \to \mathbb{R}$ and some  $p \in \mathbb{R}, p \ge 2$ , we define the functional

$$\mathcal{F}(u) = \frac{\int_M (|\nabla u|^2 + wu^2) \operatorname{dvol}}{\|u\|_{L^p}^2}.$$

Here, as usual, the  $L^p$ -norm is defined by  $||u||_{L^p} = (\int_M |u|^p \operatorname{dvol})^{\frac{1}{p}}$ . Show that for  $u \in C^{\infty}(M)$ , the following are equivalent:

(i) For all  $v \in C^{\infty}(M)$ , one has

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\mathcal{F}(u+tv)=0.$$

(ii) There is a constant  $c \in \mathbb{R}$  with

$$\Delta u + wu = c|u|^{p-2}u.$$

Additionally, if one and hence both of the equivalent conditions are satisfied, express the constant c in terms of  $\mathcal{F}(u)$  and  $||u||_{L^p}$ .

## **2.** Exercise (4 points).

Let  $\mathcal{L} \coloneqq \{X \in \mathbb{R}^{n+1,1} \setminus \{0\} \mid \langle \langle X, X \rangle \rangle = 0\}$  be the set of light-like vectors in Minkowski space.

- a) Show that  $\mathcal{L}$  is a smooth (but not semi-Riemannian!) submanifold of  $\mathbb{R}^{n+1,1}$  and  $\iota: S^n \to \mathcal{L}, x \mapsto (1, x)$  is an embedding of smooth manifolds<sup>1</sup>. Prove furthermore that  $S^n \stackrel{\iota}{\longrightarrow} \mathcal{L} \to \mathcal{L}/\mathbb{R}^*$  is a bijection, giving rise to a smooth map  $\pi: \mathcal{L} \to \mathcal{L}/\mathbb{R}^* \cong S^n$ .
- b) Let  $x \in \mathcal{L}$ . A space-like vector  $v \in T_x \mathcal{L}$  defines an oriented plane  $E_v = \operatorname{span}(x, v)$  in  $\mathbb{R}^{n+1,1}$  ((x, v) shall be positively oriented in  $E_v$ , say). Given two oriented planes E and F such that  $E = E_v$  and  $F = E_w$  for some space-like  $v, w \in T_x \mathcal{L}$ , show that their enclosed angle

$$\angle (E, F) = \arccos \frac{\langle \langle v, w \rangle}{\sqrt{\langle \langle v, v \rangle} \sqrt{\langle \langle w, w \rangle}} \in [0, \pi]$$

is well-defined (i. e. independent of the choices of v and w). Verify additionally that  $\angle (E, F) = \angle (d_x \pi(v), d_x \pi(w))$ , where the latter is the angle between two vectors on the standard sphere  $(S^n, g)$ .

c) Let  $A \in O(n+1, 1)$ . Show that A restricts to a diffeomorphism  $A: \mathcal{L} \to \mathcal{L}$ , that there is a unique map  $\widetilde{A}$  making the diagram



commute and that  $\widetilde{A}$  is a conformal diffeomorphism.

<sup>&</sup>lt;sup>1</sup>including being a homeomorphism onto its image

## **3.** Exercise (4 points).

Let  $x^1: S^n \to \mathbb{R}$  be the restriction of the function  $\mathbb{R}^{n+1} \ni x = (x_1, \dots, x_{n+1}) \to x_1$  and let  $X = \operatorname{grad} x^1 \in \Gamma(TS^n)$ , where the gradient is taken with respect to the standard metric g on  $S^n$ .

a) Show that X is a conformal Killing field, more precisely,

$$\mathcal{L}_X g = -2x^1 \cdot g.$$

Hint no.1: Verify first  $X_p = e_1 - x^1(p) \cdot p \in T_p S^n \subset \mathbb{R}^{n+1}$ . Hint no. 2: if  $\overline{\nabla}$  is the connection on  $\mathbb{R}^{n+1}$  and if grad is the gradient of  $\mathbb{R}^{n+1}$ , then the relations grad  $x^1 = e_1$  and  $\overline{\nabla} e_1 = 0$  might be helpful.

b) Conclude that  $\Delta x^1 = nx^1$ .