Differential Geometry II Lorentzian Geometry

Lecture Notes

©: Alain Riazuelo, IAP/UPMC/CNRS, license CC-BY-SA 3.0

Prof. Dr. Bernd Ammann

Summer term 2021

University of Regensburg

Presentation Version

Version of June 23, 2021

3.2.5 **3∞∑ Cauchy hypersurfaces**

Let A be achronal, i.e. no timelike f.-d. curve from A to A.

$$\operatorname{edge}(A) \coloneqq \left\{ p \in \overline{A} \mid \begin{array}{c} \text{for all open neighborhoods } U \text{ of } p, \text{ there} \\ \text{is a f.-d. timelike curve in } U \text{ from } I^U_-(p) \\ \text{to } I^U_+(p) \text{ that does not hit } A. \end{array} \right\}$$

Definition 3.5.69. A subset $S \subset M$, dim M = m is a topological hypersurface, if for any $p \in S$ we can choose $U \Subset M$ with $p \in U$, $V \Subset \mathbb{R}^m$, and a homeomorphism $\varphi : U \to V$ such that

$$\varphi(U \cap S) = V \cap (\{0\} \times \mathbb{R}^{m-1}).$$

Such a triple (U, V, φ) , alternatively written as $U \xrightarrow{\varphi} V$, is called a topological submanifold chart for S around p.

Lemma 3.2.70a. Let $S \subset M$, dim M = n + 1 be achronal and a topological hypersurface, then for any $p \in S$ we can choose a topological submanifold chart $U \xrightarrow{\varphi} V \subset \mathbb{R}^m \cong \mathbb{R}^{n,1}$ for S around p with the additional property that for any $(t_0, x) \in V$ the curve $t \mapsto \varphi^{-1}(t, x)$ is a smooth timelike curve, defined for $t \in (t_0 - \epsilon, t_0 + \epsilon)$ for some $\epsilon > 0$.

A achironal (=) there are no timelike f.d. curves from A to A

