Differential Geometry II Lorentzian Geometry

Lecture Notes

©: Alain Riazuelo, IAP/UPMC/CNRS, license CC-BY-SA 3.0

Prof. Dr. Bernd Ammann Summer term 2021

University of Regensburg

Presentation Version

Version of June 1, 2021

Lemma 3.2.29. Let $c:[a,b] \to M$ be a causal piecewise C^1 -curve which is not a lightlike pregeodesic. In each neighborhood of c with respect to the compact-open topology we find a timelike smooth curve with the same start and end point. The new curve has the same time direction as c.

Proof:

- (1) we can assume w.l.o.g. that c is smooth (see handwritten notes, follows from Cor. 3.2.17a)
- (2) The statement follows if there is a $t_0 \in [a, b]$ with $\dot{c}(t_0)$ timelike. (see handwritten notes)
- (3) We assume that c is a smooth lightlike curve, but not a pregeodesic. W.l.o.g. [a,b] = [0,1]. Deriving $g(\dot{c}(t),\dot{c}(t)) = 0$ we obtain

$$0 = \frac{d}{dt}g(\dot{c}(t),\dot{c}(t)) = 2g\left(\frac{\nabla}{dt}\dot{c}(t),\dot{c}(t)\right). \tag{3.2.1}$$

$$\frac{\nabla}{dt}\dot{c}(t) \in (\dot{c}(t))^{\perp} = \mathbb{R} \quad \dot{c} \text{ if } \oplus \text{ } \mathbf{E}_{\mathbf{t}}$$

Thus

We have explained (see in the handwritten notes for details): as c is not a pregeodesic, there is some $t_0 \in [0,1]$ with

$$\frac{\nabla}{dt}\Big|_{t=t_0} \dot{c}(t) \notin \mathbb{R} \dot{c}(t_0)$$

and that this implies

$$g\left(\frac{\nabla}{dt}\Big|_{t=t_0}\dot{c}(t), \frac{\nabla}{dt}\Big|_{t=t_0}\dot{c}(t)\right) > 0$$

Deriving (3.2.1) once again we get

$$0 = \frac{d}{dt}g\Big(\frac{\nabla}{dt}\dot{c}(t),\dot{c}(t)\Big) = g\Big(\frac{\nabla}{dt}\frac{\nabla}{dt}\dot{c}(t),\dot{c}(t)\Big) + g\Big(\frac{\nabla}{dt}\dot{c}(t),\frac{\nabla}{dt}\dot{c}(t)\Big).$$

Choose YOE TOOM time like with g (Vo, c (0)) < 0. Ford YET (coTM) sth. Y(0)=4. Cd = 0Then g(YHI, c(t)) ± 0 cont. int => g(YHI, c(t)) ± 0 cont. int => g(YHI, c(t)) ± 0 cont. int Ansatz & Suppose we harve Smooth Contins distold & $\chi(0)=\chi(1)=\beta(0)=\beta(1)=0$ and 5.th. XIH = = XHY (H + SH Litt satisfies FfECOM g(VX , c(+)/<0.

Suppose we have such a,
$$S$$
 . S .

Determine $C: EO_1 IJ \times (-E, E) \rightarrow T7$
 $L+_1 S) \mapsto C_2 LH$

Such $C_6 = C$. C .

=> Js, > 0 Fs∈ (o,so) Htelon g(cs ltl, cs (t) | < 6 => cs is timelike Hs∈ (o,so) => statenet

About of the Answer?

$$g(\nabla X) = \alpha \quad g(Y, c)$$
 $+\alpha g(dY, c) + \beta g(dY, c, c)$

Then $\gamma(H) := \frac{g(\Xi_t c(H) \Xi_t c(H))}{g(Y(H, c(H))} \le 0$ $g(Y(H, c(H)) \le 0$ $g(Y(H, c(H)) \le 0$ $g(Y(H, c(H)) \le 0$

Thus we defenine /s: [0,1] = R with \$ (5 (H) x (H) = -1.

ad
$$\beta(0) = \beta(1) = 0$$
.

Define $\alpha(1) := \frac{1}{5}(\beta(1) + \beta(1) + \beta(1)) ds$

$$= \beta(0) = 0 = \alpha(1)$$

$$3(\frac{3}{4}, c) = (\frac{3}{4}, c) = (\frac{3}{4}, c)$$

$$4 \beta(\frac{3}{4}, c) = (\frac{3}{4}, c) + (\frac{3}{4}, c) = (\frac{3}{4}, c)$$

$$= 0$$

Romerk Hc is a light like preguederic, then the condusion of Len 2,29 does not held. $M = R^{4/1}$ $CHI = t \cdot X$ ach * Lightlike (c) Only causel cover from c(of to alb 13 up to reparametrization a

Lemma 2.30 Assume that c: [a,5] >17 is a light like smooth geoderic and CocabJ& (-E, E/ -) Magnooth Variation (+, s) (+, s) (+) Variation v.f. $X = \frac{\alpha}{\alpha s}|_{s=0} c_s \in \Gamma(c^*TM)$ Co=c) and we assime 1.) g(X(a), c(a)) = 0 ad g(X(b), c(b)=0 is timelike 2.) 75; >0 s.fh. Cs;

The glat XH, c (H)=0 H+close 1.

Proof: Weog
$$S_i = 0$$
 V_i

$$0 \ge \lim_{i \to \infty} \frac{g(\mathring{c}_{s_i}, \mathring{c}_{s_i})}{S_i} = \lim_{i \to \infty} \frac{g(\mathring{c}_{s_i}, \mathring{c}_{s_i}) - g(\mathring{c}_{s_i}, \mathring{c}_{s_i})}{S_i - 0}$$

$$= \frac{\partial}{\partial S}|_{S=0} g(\mathring{c}_{s_i}, \mathring{c}_{s_i})$$

$$= \frac{\partial}{\partial S}|_{S=0} g(\mathring{c}_{s_i}, \mathring{c}_{s_i})$$

$$= 2g(\mathring{d}_{t_i}, \mathring{c}_{s_i}, \mathring{c}_{s_i}) = 2g(\mathring{d}_{t_i}, \mathring{c}_{s_i}, \mathring{c}_{s_i})$$

$$= 2g(\mathring{d}_{t_i}, \mathring{c}_{s_i}, \mathring{c}_{s_i}, \mathring{c}_{s_i}) = 2g(\mathring{d}_{t_i}, \mathring{c}_{s_i}, \mathring{c}_{s_i}, \mathring{c}_{s_i})$$

$$= 2g(\mathring{d}_{t_i}, \mathring{c}_{s_i}, \mathring{c}_{s_i},$$

$$= g(X(h), c(h)) - g(X(a), c(a)) =$$

$$= 2 g(X(h), c(h)) - g(X(a), c(a)) =$$

THE ME

In the following let (M, g) be any semi-Riemannian manifold.

Suppose that $c_{\bullet}: [0,1] \times (-\epsilon, \epsilon) \to M$, $(t,s) \mapsto c_s(t)$ be a variation of $c = c_0$. Recall: The variation vector field of this variation is defined as

$$X(t) \coloneqq \frac{\partial}{\partial s}\Big|_{s=0} c_s(t).$$

If c_{\bullet} is a geodesic variation, i. e., if c_s is a geodesic for any $s \in (-\epsilon, \epsilon)$, then the variation vector field J satisfies – generalizing [12, Proposition 3.5.7] in an obvious way:

$$\frac{\nabla^{2}}{dt^{2}}J = \frac{\nabla^{2}}{dt^{2}}\frac{\partial}{\partial s}\Big|_{s=0}c_{s}(t)$$

$$= \frac{\nabla}{dt}\frac{\nabla}{ds}\Big|_{s=0}\frac{\partial}{\partial t}c_{s}(t)$$

$$= \frac{\nabla}{dt}\frac{\nabla}{ds}\Big|_{s=0}\dot{c}_{s}(t)$$

$$\stackrel{(*)}{=} \frac{\nabla}{ds}\Big|_{s=0}\underbrace{\frac{\nabla}{dt}\dot{c}_{s}(t)}_{=0} + R(\dot{c}, J)\dot{c}$$

$$= -R(J, \dot{c})\dot{c}$$

At (*) we used Exercise Sheet 4, Exercise 3 c).

Definition 3.2.31. Let c be a (piecewise C^1 -curve. The $J \in \Gamma(c^*TM)$ is called a Jacobi field if

Lemma 3.2.32. Let c be a geodesic. For $J \in \Gamma(c^*TM)$ the following are equivalent

- (1) J is a Jacobi field.
- (2) there is a geodesic variation c_{\bullet} of c with variational vector field J.

Proof:

" $(2) \Longrightarrow (1)$ ": see above.

"(1) \Longrightarrow (2)": (Idea explained in the Riemannian case in [12, after Ex-

ample 3.5.10]).

Let C= Cass] = 1 be a gred. Jacobi field along c. Wlog. $06G_0h$]

Choose a curve $y: [0,5]^3 \Rightarrow \Pi$ with y(0) = c(0) $\dot{y}(0) = J(0)$. Let $X_1cX_2 \in P(y*TM)$ with $X_1(0) = \dot{c}(0)$ $(1)\dot{y}(0) = J(0)$. $X_2 lol = \frac{y}{dt} y l_{t=0}$ and $\frac{y}{ds} x_i = 0$ Define X(sl= X1 (sl +5 82 (s).