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2.6 Exponential map and normal coordinates

2.6 Exponential map and normal coordinates

Let (M, g) be a semi-Riemannian manifold. For some p ∈ M and

X ∈ TpM let “X ∶ (aX , bX) →M be the geodesic with “̇X(0) = X (and

thus “X(0) = p), defined on its maximal domain. Obviously we have

for s > 0

“sX(t) = “X(st), asX = s−1aX , bsX = s−1bX ,

We set Dp ∶= �X ∈ TpM � bX > 1�. In other wors X ∈ TpM is in Dp

if, and only if, “X exists on [0, 1]. It follows from above, that Dp is

starshaped with respect to 0 ∈ TpM , and the dependence on the initial

data in the theorem of Picard-Lindelöf shows that Dp is open in TpM

and that D ∶= �p∈M Dp is open in TM .

We may define the exponential map

exp ∶ D →M, X � “X(1).
The definition implies exp(0 ∈ TpM) = p and “X(t) = exp(tX) when-

ever defined, and exp is smooth. We write expp for exp �Dp

. Then with

the usual identification T0(TpM) ≅ TpM . We get d0 expp = idTpM .

Thus for every p ∈ M we have an open neighborhood U of 0 in

TpM such that expp maps U diffeomorphically to expp(U) ⊂○ M . Let

Ï ∶ Rm,k → (TpM, gp) a linear isometry. Then

(expp ○Ï�Ï−1(U))−1 ∶ expp(U)→ Ï−1(U)
defines a chart of M around p. Its components are called normal

coordinates centered in p.
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2 Semi-Riemannian manifolds and their submanifolds

Lemma 2.6.1 (Gauß Lemma). Let M be a semi-Riemannian mani-

fold, p ∈ M , X ∈ Dp. Then for any V = t0X, W ∈ T0(TpM) ≅ TpM

with t0 ∈ R, we have

g�dX expp(V ), dX expp(W )� = g(V, W ).
Proof:
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