Differential Geometry II Lorentzian Geometry

Lecture Notes

©: Alain Riazuelo, IAP/UPMC/CNRS, license CC-BY-SA 3.0

Prof. Dr. Bernd Ammann

Summer term 2021

University of Regensburg

Presentation Version

Version of May 12, 2021

2.6 Exponential map and normal coordinates

Let (M,g) be a semi-Riemannian manifold. For some $p \in M$ and $X \in T_p M$ let $\gamma_X : (a_X, b_X) \to M$ be the geodesic with $\dot{\gamma}_X(0) = X$ (and thus $\gamma_X(0) = p$), defined on its maximal domain. Obviously we have for s > 0

$$\gamma_{sX}(t) = \gamma_X(st), \quad a_{sX} = s^{-1}a_X, \quad b_{sX} = s^{-1}b_X,$$

We set $\mathcal{D}_p \coloneqq \{X \in \mathrm{T}_p M \mid b_X > 1\}$. In other wors $X \in \mathrm{T}_p M$ is in \mathcal{D}_p if, and only if, γ_X exists on [0,1]. It follows from above, that \mathcal{D}_p is starshaped with respect to $0 \in \mathrm{T}_p M$, and the dependence on the initial data in the theorem of Picard-Lindelöf shows that \mathcal{D}_p is open in $\mathrm{T}_p M$ and that $\mathcal{D} \coloneqq \bigcup_{p \in M} \mathcal{D}_p$ is open in $\mathrm{T} M$.

We may define the exponential map

The definition implies $\exp(0 \in T_p M) = p$ and $\gamma_X(t) = \exp(tX)$ whenever defined, and exp is smooth. We write \exp_p for $\exp|_{\mathcal{D}_p}$. Then with the usual identification $T_0(T_p M) \cong T_p M$. We get $d_0 \exp_p = \operatorname{id}_{T_p M}$.

Thus for every $p \in M$ we have an open neighborhood U of 0 in T_pM such that \exp_p maps U diffeomorphically to $\exp_p(U) \Subset M$. Let $\varphi : \mathbb{R}^{m,k} \to (T_pM, g_p)$ a linear isometry. Then

$$(\exp_p \circ \varphi|_{\varphi^{-1}(U)})^{-1} : \exp_p(U) \to \varphi^{-1}(U)$$

defines a chart of M around p. Its components are called **normal** coordinates centered in p.

Summer term 2021 $\Im_{ij} = \Im_{ij} \varepsilon_i + \Im(r^1)$

Page 91

$$\frac{\partial \Psi}{\partial t}(t,s) = dexpp(X+sW)$$

$$\frac{\partial \Psi}{\partial t}(t,s) = dexpp(X+sW)$$

$$\frac{\partial \Psi}{\partial t}(t,s) = dexpp(X) = \frac{\partial \Psi}{\partial t}(t,s)$$

$$\frac{dexp}{\partial t}(t,s) = dexp(X) = g(X+sW)$$

$$\frac{\partial \Psi}{\partial t}(t,s) = dexp(Y) = g(X+sW)$$

$$\frac{\partial \Psi}{\partial t}(t,s) = dexp(Y) = 0$$

$$\frac{\partial \Psi}{\partial t}(t,s) = dexp(W)$$

$$\frac{\partial \Psi}{\partial t}(t,s) = dexp(W)$$

$$\frac{\partial \Psi}{\partial t}(t,s) = dexp(W)$$

$$\frac{\partial \Psi}{\partial t}(t,s) = \frac{\nabla}{\partial t} \frac{\partial \Psi}{\partial t}$$

$$\frac{\partial \Psi}{\partial t}(t,s) = \frac{\nabla}{\partial t} \frac{\partial \Psi}{\partial t}$$

$$\frac{\partial \Psi}{\partial t}(t,s) = \frac{\nabla}{\partial t} \frac{\partial \Psi}{\partial t}$$

 $\frac{\partial}{\partial t} g\left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right) = g\left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right)$ $= g\left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right)$ $= g\left(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right)$ = 0f (+) $t g\left(\frac{\partial Y}{\partial t}, \frac{\nabla}{d t}, \frac{\partial Y}{\partial s}\right)_{l \leq n} \xrightarrow{E_{x} sheet 4}{\frac{1}{2}}$ $\Im\left(\frac{\partial 4}{\partial t}, \frac{\nabla}{ds}, \frac{\partial 4}{\partial t}\right) =$ $\frac{1}{2} \frac{\partial}{\partial s} |_{s=0} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial t} |_{s=0}$ $= g(\lambda + sW, \lambda + sW)$ $= g(\chi, W) + 2sg(\chi, W) + sg(W, M)$

 $f(0) = 0 \quad f'(t) = g(t, w)$ $\Longrightarrow f(1) = g(x, w) = g(v, w)$ lihs, [] $\frac{\nabla}{d+} X := \nabla_{2} X$