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2 Semi-Riemannian manifolds and their submanifolds

Recapitulation before the lecture on 05.05.:

Generalized warped product metrics.

M = B × F

ǧ semi-Riemannian metric on B, also ǧ ∶= (fiB)∗ǧ ∈ Γ(T∗M ⊗T∗M)
For any b ∈ B have a metric ĝb, semi-Riemannian metric on F , join

together to ĝ ∈ Γ(T∗M ⊗T∗M)
ggwp = ǧ + ĝ

g
gwp(b,f)�(X1, Y1), (X,Y2)� ∶= ǧb(X1, X2) + ĝb

f(Y1, Y2).

Goal.

Determine the curvature of (M, ggwp)
———

Proposition 2.5.2. Let ggwp a generalized warped product metric on

M = B × F as above.

(a) For each b ∈ B the second fundamental form of F b ∶= {b} × F

in (M, ggwp) satisfies for all U, V ∈ X (F b) and all X ∈ TbB ⊂
T(b,f)M

ggwp��IIF b(U, V ), X� = −1

2
(ˆX ĝ)(U, V )

(b) For each f ∈ F the second fundamental form of Bf ∶= B ×{f} in(M, gw) vanishes.
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2.5 Warped products

Remark 2.5.3. Before we prove the proposition, let us explain how

to pullback tensors Γ(Tr,sB) to tensors in Γ(Tr,sM).
For r = 0 this is just the standard pullback of (0, s)-tensors aling fi

B,

i. e., for – ∈ Γ(T0,sB) we defined

�fiB�∗–(X1, . . . , Xs) ∶= –(dfi
B(X1), . . . , dfi

B(Xs)).
The tangent space of M in x = (b, f) ∈ M can be identified as follows

T(b,f)(B ×F ) = TbB ⊕TfF.

For a vector field X ∈ X (B) we define (fiB)∗X ∈ X (B × F ) by

�fiB�∗X �(b,f) ∶= �X �b, 0�.
By additionally requiring linearity and compatibility with tensoring

�fiB�∗ (·1 ⊗ ·2) = ��fiB�∗ ·1� ⊗ ��fiB�∗ ·2�
we obtain �fiB�∗ ∶Γ(T ● , ●B)→ Γ(T ● , ●M).
Similarly we obtain

�fiF�∗ ∶Γ(T ● , ●F )→ Γ(T ● , ●M).
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2 Semi-Riemannian manifolds and their submanifolds

Proposition 2.5.2. Let ggwp a generalized warped product metric on

M = B × F as above.

(a) For each b ∈ B the second fundamental form of F b ∶= {b} × F

in (M, ggwp) satisfies for all U, V ∈ X (F b) and all X ∈ TbB ⊂
T(b,f)M

ggwp��IIF b(U, V ), X� = −1

2
(ˆX ĝ)(U, V )

(b) For each f ∈ F the second fundamental form of Bf ∶= B ×{f} in(M, gw) vanishes.

Proof of Proposition 2.5.2:

“(a)”: If we view U, V ∈ X (F b) as vector fields on F , then Ũ ∶=(fiF )∗U, Ṽ ∶= (fiF )∗ V ∈ X (M) are extensions of U, V . In other words

Ũ is the extension with Ũ �(b̃,f) = U �(b,f) for all (b̃, f) ∈ M .

Let us extend X to X ∈ X (B), and set X̃ ∶= (fiF )∗X ∈ X (M).
Then [X̃, Ũ] = 0 and [X̃, Ṽ ] = 0. Let ∇ be the Levi-Civita connection

for ggwp. We calculate

ggwp��IIF b(U, V ), X� = ggwp �∇Ũ Ṽ, X̃�
= ˆŨ ggwp(Ṽ, X̃)������������������������������������������������=0

−ggwp �Ṽ,∇ŨX̃�
= 0 − ggwp �Ṽ,∇X̃Ũ� ,

where we used 0 = [X̃, Ṽ ] = ∇X̃Ũ −∇ŨX̃.

Because of �IIF b(U, V ) = �IIF b(V, U) we get

2ggwp��IIF b(U, V ), X� = −ggwp �Ṽ,∇X̃Ũ� − ggwp �Ũ,∇X̃ Ṽ �
= −ˆX̃ �ggwp(Ṽ, Ũ)� = − (ˆX̃ ĝ) (U, V )
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2.5 Warped products

“(b)”: This proof can be carried out similarly for X, Y ∈ X (Bf) and

U ∈ TfF . One gets

2ggwp��IIBf(X, Y ), U� = −(ˆŨ ǧ)(X, Y ),
and (ˆŨ ǧ) = 0 as ǧ does not depend on f .

Remark 2.5.4. The above proposition says, roughly speaking, that

the −2�II is the derivative of the semi-Riemannian metric on the sub-

manifold F b in normal directions. In fact one can show the following

variation formula for the metric.

Let M be a semi-Riemannian submanifold M of a semi-Riemannian

manifold (M, g) with vector-valued second fundamental form �II. Let

ft ∶ M → M be a family of diffeomorphisms, smoothly depending

on t ∈ (−‘, ‘), and f0 = id. We define the variation vector fieldV �p ∶= d
dt �t=0ft(p) for p ∈ M . We assume further that V ∈ Γ(NM). Then

g �V , �II� = −1

2

d

dt �t=0 ��f∗t g�
TM×TM

� .

This specializes to the proposition by considering M = B×F , M = {b}×
F , V = U . This result can be proved by slight extending arguments in

the proof of the variational formula for the area.
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2 Semi-Riemannian manifolds and their submanifolds

Definition 2.5.5. A vector field X ∈ X (B × F ) is called vertical,

if for any x = (b, f) ∈ M we have X �x ∈ {0} × TfF . A vector field

X ∈ X (B ×F ) is called horizontal, if for any x = (b, f) ∈ M we have

X �x ∈ TbB × {0}. Thus any X ∈ X (B × F ) can be written uniquely as

X =Xhor +Xver, where Xhor is horizontal, called the horizontal part

of X, and where Xver is vertical, called the vertical part of X.

The Gauß formula implies:

Corollary 2.5.6. With the above notation we have for horizontal vec-

tor fields X, Y, Z ∈ X (M)
R(X, Y )Z = Ř(X, Y )Z.

Definition 2.5.7. A warped product metric on M = B × F is a

generalized warped product metric gw = ǧ+ĝ with the notation as above,

such that there is a semi-Riemannian metric gF on F and a smooth

positive function w ∈ C∞(B,R>0) such that ĝb = w2gF . We thus have

gw = ǧ +w2gF .

In this special case we obtain

gw��IIF b(U, V ), X� = −(ˆXw)w gF (U, V ) = −(ˆX log w) ĝ(U, V ),
or equivalently

�IIF b(U, V ) = −ĝ(U, V ) ( ˇgrad log w).
Note that for a function f ∈ C∞(B) the gw-gradient of f ○fi

B coincides

with the pullback of the ǧ-gradient ˇgradf ∈ X (B) ⊂ X (M). Hence

we may also write grad instead of ˇgrad.
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2.5 Warped products

Example 2.5.8 ((Hyper-)surfaces of revolution). We assume that we

have a smooth function f ∶ (a, b) → R>0. We consider the curve c(t) ∶=(t, f(t)) and the submanifold

Mrot ∶= {(t, x)� ∈ (a, b) ×Rn � f(t) = �x�} ⊂ R
n+1.

Riemannian or Lorentzian

Last Lecture

Example 2.5.9 (Robertson-Walker spacetimes).

A Robertson-Walker spacetime is a manifold M = (a, b) × F with

the Lorentzian metric −dt ⊗ dt + w(t)2ĝ where (F, ĝ) is Riemannian

manifold of constant sectional curvature.

Example 2.5.10 (Rotationally symmetric Riemannian metrics). Let g

be a Riemannian metric on Rn � BR(0) which is invariant under the

action of O(n) on Rn � BR(0). We define for r ≥ R let ¸(r) be

the length of the straigth line from (R, 0, . . .)� to (r, 0, . . .)�, and let

¸∞ ∶= limr→∞ ¸(r). Then we define

Ï ∶ Rn �BR(0)→ Sn−1 × (0, ¸∞), x � � x�x�, ¸(�x�)�
Then (Ï−1)∗g is a Riemannian warped product metric on Sn−1×(0, ¸∞)
given by

dt⊗ dt +w(t)2gSn−1

where gSn−1

is the standard metric on Sn−1.
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2 Semi-Riemannian manifolds and their submanifolds

Exercise 2.5.11. With the above notation calculate for vertical vector

fields U, V, W ∈ X (M)
R(U, V )W = R̂(U, V )W − ǧ( ˇgradw, ˇgradw)

w2
�ĝ(V, W )U − ĝ(U, W )V �.

Hints: you have to consider both the horizontal and the vertical part

of this equation. Consider the subsection on homotheties.

Lemma 2.5.12. For X ∈ X (B) and V ∈ X (F ) we have ∇XV =∇V X = (ˆX log w)V .

Proof: As X acts on functions by derivation in the B-direction,

and V acts by derivation in the F direction, Schwarz’s theorem implies[X, V ] = 0 in the sense of commutator of vector fields on M . This

implies ∇V X = ∇XV . For any horizontal vector field Y we calculate

gw(∇XV, Y ) = ˆX

=0��������������������������������
gw(V, Y )−gw(V,∇XY ) = −gw�V,

=0�����������������������������������������IIB(X, Y )� = 0,

thus ∇XV is vertical. For any vertical vector field U we calculate

gw(∇V X, U) = ˆV

=0�����������������������������������
gw(X, U)−gw(X,∇V U) = −gw�X, �IIF (V, U)�

= (ˆX log w) gw(V, U),
and this implies the statement.

For the following theorem note, that similar to the gradient, the pull-

back of the Hessian of a function f ∈ C∞(B) to W coincides with the

Hessian of f ○ fi
B. Thus we have ∇̌2f = ∇2f .
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2.5 Warped products

Theorem 2.5.13 (Riemann curvature tensor for warped products).

Let gw be a warped product on B×F with the notation from above. Let

X, Y, Z be horizontal and let U, V, W be vertical vector fields on M .

Then

R(X, Y )Z = Ř(X, Y )Z (2.5.1)

R(X, U)Y = (∇2w)(X, Y )
w

U

= �(∇2 log w)(X, Y ) + (ˆX log w)(ˆY log w)�U (2.5.2)

R(U, V )X = 0 (2.5.3)

R(X, Y )U = 0 (2.5.4)

R(X, U)V = −gw(U, V )
w

∇X(grad w) (2.5.5)

R(U, V )W = R̂(U, V )W
− g(grad w, grad w)

w2
�ĝ(V, W )U − ĝ(U, W )V �. (2.5.6)

Proof: At several places we will use ˆX log w = ˆXw
w

.

“(2.5.1)”: See Corollary 2.5.6.

“(2.5.2)”: We give two formulas, as both are helpful in applications.

The additional transformations are given in blue.

∇X∇UY
Lem. 2.5.12= ∇X ((ˆY log w)U)
= (ˆXˆY log w + (ˆY log w)(ˆX log w))U
= ˆXˆY w

w
U

As we know that �IIBf = 0 for all f ∈ F , we know that ∇XY = ∇̌XY .

∇U∇XY = ∇U∇̌XY = �ˆ∇̌XY log w�U

= ˆ∇̌XY w

w
U.
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2 Semi-Riemannian manifolds and their submanifolds

Because of [X, U] = 0 this provides the requested formulae.

“(2.5.3)”: We get

∇U∇V X
Lem. 2.5.12= ∇U ((ˆX log w)V )
= (ˆUˆX log w)���������������������������������������������������������������=0

V + (ˆX log w)∇UV

and thus using again Lemma 2.5.12 for ∇[U,V ]X
R(U, V )X = (ˆX log w) (∇UV −∇V U − [U, V ]) = 0.

“(2.5.4)”: R(X, Y )U is horizontal because of

g(R(X, Y )U, V ) = g(R(U, V )X, Y ) (2.5.3)= 0.

On the other hand

g(R(X, Y )U, Z) = −g(R(X, Y )Z, U) (2.5.1)= 0.

“(2.5.5)”: R(X, U)V is horizontal because of

g (R(X, U)V, W ) = g (R(V, W )X, U) (2.5.3)= 0.

For the horizontal part we calculate

g (R(X, U)V, Y ) = −g (R(X, U)Y, V )
(2.5.2)= −g �(∇2w)(X, Y )

w
U, V �

(∗)= −gw(U, V )
w

g (∇X(grad w), Y ) ,
where we used at the transformation (∗) the remark after Defini-
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