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2 SEMI-RIEMANNIAN MANIFOLDS AND THEIR SUBMANIFOLDS

Recapitulation before the lecture on 05.05.:

Generalized warped product metrics.
M=BxF
¢ semi-Riemannian metric on B, also §:= (78)*ge I'(T*M ® T*M)

For any b € B have a metric §°, semi-Riemannian metric on F, join
together to g e I'(T*M @ T*M)

ggwp:§+§

gon (X1, Y1), (X Y2)) = (X1, Xo) + gh(¥3, Y2).

Goal.

Determine the curvature of (M, ggwp)

—_— K/W"_‘
\/(c‘ﬁ

~

Proposition 2.5.2. Let a generalized warped product metric on
M = B x F' as above.

(a) For each b € B the second fundamental form of F? := {b} x F
in (M, gewp) satisfies for all U,V e Z7(F?) and all X € TyB c
LonM

(7 (U, V), X) = =5(0x0)(U, V)

(b) For each f € F the second fundamental form of Bf := Bx{f} in
(M, gy) vanishes.
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2.5 Warped products
T M= THMe @7 T Ne - ®T M
—  Sr—foen <-
Remark 2.5.3. Before we prove the proposition, let us explain how
to pullback tensors I'(T"™*B) to tensors in I'('T"*M).
For r = 0 this is just the standard pullback of (0, s)-tensors aling 75,

i.e., for a e I(TY*B) we defined

(78) a(X1,..., X,) = a(drP(X)),. .., d7B(X])).
The tangent space of M in z = (b, f) € M can be identified as follows
Ton(BxF)=Ty,BeTF.
For a vector field X € 2°(B) we define (78)" X ¢ 2 (B x F) by
(WB)*AX;|(b7f) = (X|b’ 0)'
By additionally requiring linearity and compatibility with tensoring
(x) (mem) = ((«") n)&((=") n)

we obtain
(7B)":T(T*"B) > T(T"" M).

Similarly we obtain
(7F) :T(T*"F) - T(T** M).

Sy
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2 SEMI-RIEMANNIAN MANIFOLDS AND THEIR SUBMANIFOLDS

Proposition 2.5.2. Let gewp a generalized warped product metric on
M = B x F' as above.

(a) For each b € B the second fundamental form of F? := {b} x F
in (M, ggwp) satisfies for all U,V e Z (F®) and all X € TyB c
To.nM

o (I (1), X) = =5 (0x0)(T/, V)

(b) For each f € F the second fundamental form of Bf =Bx{f}in
(M, g,) vanishes. «10 fv> @)

Proof of Proposition 2.5.2:

“(a)’: If we view U,V e Z (F") as vector fields on F, then U :=
(7F) U,V := (xF) Ve 2 (M) are extensions of U, V. In other words
U is the extension with U|(57f) = U|(b7f) for all (b, f) e M. @\g@/kk

Let us extend X to X € 2°(B), and set X := (zFV°X ¢ 2°(M).
Then X, U]=0and [X,V]=0. Let V be the Levi-Civita connection
for We calculate

gﬁF”(U,w,X) = Gowr (V. X)

Op ggvvp(va X) ~Ygwp (‘77 VUX)
—_—
=0

- 0 ~ Yegwp (‘77 vf(ﬁ) ’
where we used 0= [X,V] = VU -V;X

Because of ﬁFb(U, V)= ﬁFb(V, U) we get

QQgWP(ﬁFb(UaV)aX) = “Yegwp (‘7 VX'U) Ygwp (U> VX"N/)
= 6 (ggvvp(v U)) (a~§) (Ua V)
\/(sco'qu“‘“ > UBDFLVJ:D: eV

<L I f

. a
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2.5 Warped products

“(b)”: This proof can be carried out similarly for X,Y ¢ 2°(B/) and
UeT¢F. One gets

20 (17 (X, Y),U) = ~(859) (X, Y),

and (07¢g) =0 as g does not depend on f. |

Remark 2.5.4. The above proposition says, roughly speaking, that
the —21 is the derivative of the semi-Riemannian metric on the sub-
manifold F? in normal directions. In fact one can show the following

variation formula for the metric.

Let M be a semi-Riemannian submanifold Mof a semi-Riemannian
manifold (M,q) with vector-valued second fundamental form II. Let
f; + M - M be a family of diffeomorphisms, smoothly depending
on t € (—€,¢), and fy = id. We define the variation vector field
V= %|t:0ft(p) for p € M. We assume further that V e I'(NM). Then

9 [i(éL) . j(%
g (V, H) T T dt o ((ft*g)TMxTM) :

This specializes to the proposition by considering M = BxF, M = {b}x
‘ F, V= This result can be proved by slight extending arguments in

the proof of the variational formula for the area.

NEWALS E(Q\:chfﬁol e s
L
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2 SEMI-RIEMANNIAN MANIFOLDS AND THEIR SUBMANIFOLDS

xe'x U%J = @T{%J&W/ y oot ﬂw\a{r»gqﬂ

Definition 2.5.5. A wvector field X € 2 (B x F) is called vertical,
if for any x = (b, f) € M we have X|x e {0} x TsF. A wector field
X € Z(BxF) is called horizontal, if for any x = (b, f) € M we have
X|x e TyB x{0}. Thus any X € Z (B x F') can be written uniquely as
X = Xyor + Xyer, where Xy 2s horizontal, called the horizontal part

of X, and where Xy 1s vertical, called the vertical part of X.
o SN

The Gauf} formula implies: XL\{l 2 ho MJ‘”’Q ( ut\/t W r

Corollary 2.5.6. With the above notation we have for horizontal vec-
tor fields X,Y,Z € 2 (M)

R(X,Y)Z=R(X,Y)Z.

7 m
Uéb(%gw‘) ) ﬁa{ (%‘%,Jjé%pléf} P J:;{MIKB

Definition 2.5.7. A warped product metric on M = Bx F is a
generalized warped product metric g, = g+ with the notation as above,
such that there is a semi-Riemannian metric g& on F and a smooth
positive function w € C*(B,Rsy) such that §* = w?g". We thus have

gu =g+ w’g".
A
In this special case we obtain W'y [uv /
o b LTS
gw(HF (Ua V), X) = _(U7 V) = _w @(U7 V),
“~_4 A w
or equivalently Z D)( 0 ?%ﬁ

(U, V) = -4(U.V) (g@l\o.gy> 2 rdw

Note that for a function f € C*(B) the g,-gradient of fo7? coincides
with the pullback of the §-gradient gradf ¢ 2 (B) ¢ 2 (M). Hence

we may also write grad instead of gréd.
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2.5 Warped products

Example 2.5.8 ((Hyper-)surfaces of revolution). We assume that we
have a smooth function f:(a,b) - R,y. We consider the curve c(t) :=
(t, f(t)) and the submanifold

Mot = {(t,2)" € (a,0) xR" | f(t) = ||} « R™.

Riemannian or Lorentzian

Last Lecture

Example 2.5.9 (Robertson-Walker spacetimes).
A Robertson-Walker spacetime is a manifold M = (a,b) x F' with
the Lorentzian metric —dt ® dt + w(t)%2§ where (F,§) is Riemannian

manifold of constant sectional curvature.

Example 2.5.10 (Rotationally symmetric Riemannian metrics). Let g
be a Riemannian metric on R® x Bi(0) which is invariant under the
action of O(n) on R” \x Br(0). We define for r > R let ¢(r) be
the length of the(straigth line from (R,0,...)T to (r,0,...)7, and let

loo :=1im, 0 £(r). Then we define
= 5 e
NN A T
@ R\ Br(0) » §" % (0,4s), @ (=5 ((]2]))
&7 ]

Then (¢~1)*g is a Riemannian warped product metric on S x (0, s,)
. -7
given by

dt ® dt + w(t)?¢5"

where ¢5" is the standard metric on S7L.
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2 SEMI-RIEMANNIAN MANIFOLDS AND THEIR SUBMANIFOLDS

Exercise 2.5.11. With the above notation calculate for vertical vector

fields UV, W e (M)

J(gradw, gradw) (
2

R(U, V)W = R(U, V)W - g(V, W)U—g(U,W)V).

Hints: you have to consider both the horizontal and the vertical part

of this equation. Consider the subsection on homotheties.
W (\% aSuzéu War?b\\b QWANH\M Fo [Mzﬁw)

[

Lemma 2.5.12. For X € Z(B) and V ¢ Z(F) we have VxV =

VyX = (0xlogw)V.
%ﬂ7 %«Q@% C/M =Rt

Proof: As X acts on functions by derivation in the B-direction,
and V acts by derivation in the F’ direction, Schwarz’s theorem implies
[X,V] =0 in the sense of commutator of vector fields on M. This
implies Vyy X = VxV. For any horizontal vector field Y we calculate
=0 =0
—_ —_——

9u(VxV,Y) = 0x gu(V,Y) =g (V, VxY) = -, (V. I’ (X,Y)) = 0,

thus VxV is vertical. For any vertical vector field U we calculate

=0 ’FL)DZ[E%(?; C@(ﬁa

——

gw(VvX, U) = aV gw(X7 U) _gw(X7 VVU) = _gw(X7 ﬁF(V; U))
= (9xlogw) gu (V. U),
and this implies the statement. u

For the following theorem note, that similar to the gradient, the pull-
back of the Hessian of a function f € C*(B) to W coincides with the
Hessian of f onB. Thus we have V2f = V2f.
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2.5 Warped products

Theorem 2.5.13 (Riemann curvature tensor for warped products).
Let g, be a warped product on B x F with the notation from above. Let
X, Y, Z be horizontal and let U, V,W be vertical vector fields on M.
Then

R(X,Y)Z =R(X,Y)Z (2.5.1)
R(X,U)Y = (ng)u()X’Y)U

= ((Vlogw)(X,Y) + (Ox logw)(dy logw)) U (2.5.2)

R(U,V)X =0 (2.5.3)

R(X,Y)U =0 (2.5.4)

Mfaxinvzi@%?ﬁvxgmmw (2.5.5)

R(U, VYW = R(U V)W
_ g(gradw, grad w) (
2

GV.W)U - g(UW)V).  (2.5.6)

Proof: At several places we will use 0x logw = 8)‘7“’.

“(2.5.1)”: See Corollary 2.5.6.

“(2.5.2)": We give two formulas, as both are helpful in applications.
The additional transformations are given in blue.

VXVUY Lem.:2.5.12 VX((aYlng)U)
= ' (Ox0Oylogw + (Oy logw)(0x logw)) U

_ 8X(9yw U
w

As we know that 1% = 0 for all f € F, we know that VxY = VxY.

VoVxY = VyVxY = (8 ylogw)U

_ aﬁxyw U
w
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2 SEMI-RIEMANNIAN MANIFOLDS AND THEIR SUBMANIFOLDS

RIN VX

Because of [ X, U] =0 this provides the requested formulae.
“(2.5.3)": We get

VUVVX Lem.:2.5.12 VU ((aX lOgU})V)
= (OyOxlogw) V + (Ox logw)VyV

"

=0

and thus using again Lemma 2.5.12 for Viy X

R(U, V)X = (0xlogw) (VUV—MV]) =0.

“(2.5.4)”: R(X,Y)U is horizontal because of
J(R(X,Y)U,V) = g(R(U V)X, Y) *27 0.
On the other hand

g(R(X, YU, Z) = —g(R(X,Y)Z,U) “2Y 0.

“(2.5.5)”: R(X,U)V is horizontal because of
(2.5.3)
g(R(X,U)V,W) =g (R(V,W)X,U) "="0.

For the horizontal part we calculate

g (R(Xa U)‘/v Y) = -9 (R(X7 U)Y7 V)
(2.5:2) . ( (V w)U(JX, Y) U V)
= gu(UV)

D g (Vx(gradu), V),

where we used at the transformation (*) the remark after Defini-
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