Differential Geometry II

Lorentzian Geometry

Lecture Notes

©: Alain Riazuelo, IAP/UPMC/CNRS, license CC-BY-SA 3.0

Prof. Dr. Bernd Ammann
Summer term 2021

University of Regensburg

Presentation Version

Version of May 5, 2021

Recapitulation before the lecture on 05.05.:

Generalized warped product metrics.

$M=B \times F$
\check{g} semi-Riemannian metric on B, also $\check{g}:=\left(\pi^{B}\right)^{*} \check{g} \in \Gamma\left(\mathrm{~T}^{*} M \otimes \mathrm{~T}^{*} M\right)$
For any $b \in B$ have a metric \hat{g}^{b}, semi-Riemannian metric on F, join together to $\hat{g} \in \Gamma\left(\mathrm{~T}^{*} M \otimes \mathrm{~T}^{*} M\right)$

$$
\begin{gathered}
g_{\mathrm{gwp}}=\check{g}+\hat{g} \\
g_{(b, f)}^{\mathrm{gwp}}\left(\left(X_{1}, Y_{1}\right),\left(X, Y_{2}\right)\right):=\check{g}_{b}\left(X_{1}, X_{2}\right)+\hat{g}_{f}^{b}\left(Y_{1}, Y_{2}\right) .
\end{gathered}
$$

Fire Te F b

Goal.

Determine the curvature of (M, g_{gwp})
\qquad

Proposition 2.5.2. Let $\stackrel{\hat{c}}{\stackrel{\rightharpoonup}{\text { BD }}}$ a generalized warped product metric on $M=B \times F$ as above .
(a) For each $b \in B$ the second fundamental form of $F^{b}:=\{b\} \times F$ in $\left(M, g_{g w p}\right)$ satisfies for all $U, V \in \mathscr{X}\left(F^{b}\right)$ and all $X \in \mathrm{~T}_{b} B \subset$ $\mathrm{T}_{(b, f)} M$

$$
g \widehat{\operatorname{EWF}^{(}}\left(\overrightarrow{\mathrm{II}}^{F^{b}}(U, V), X\right)=-\frac{1}{2}\left(\partial_{X} \hat{g}\right)(U, V)
$$

(b) For each $f \in F$ the second fundamental form of $B^{f}:=B \times\{f\}$ in $\left(M, g_{w}\right)$ vanishes.

2.5 Warped products

Remark 2.5.3. Before we prove the proposition, let us explain how to pullback tensors $\Gamma\left(\mathrm{T}^{r, s} B\right)$ to tensors in $\Gamma\left(\mathrm{T}^{r, s} M\right)$.
For $r=0$ this is just the standard pullback of $(0, s)$-tensors aling π^{B}, i. e., for $\alpha \in \Gamma\left(\mathrm{T}^{0, s} B\right)$ we defined

$$
\left(\pi^{B}\right)^{*} \alpha\left(X_{1}, \ldots, X_{s}\right):=\alpha\left(\mathrm{d} \pi^{B}\left(X_{1}\right), \ldots, \mathrm{d} \pi^{B}\left(X_{s}\right)\right) .
$$

The tangent space of M in $x=(b, f) \in M$ can be identified as follows

$$
\mathrm{T}_{(b, f)}(B \times F)=\mathrm{T}_{b} B \oplus \mathrm{~T}_{f} F .
$$

For a vector field $X \in \mathscr{X}(B)$ we define $\left(\pi^{B}\right)^{*} X \in \mathscr{X}(B \times F)$ by

$$
\left.\left(\pi^{B}\right)^{*} X\right|_{(b, f)}:=\left(\left.X\right|_{b}, 0\right)
$$

By additionally requiring linearity and compatibility with tensoring

$$
\left(\pi^{B}\right)^{*}\left(\tau_{1} \otimes \tau_{2}\right)=\left(\left(\pi^{B}\right)^{*} \tau_{1}\right) \otimes\left(\left(\pi^{B}\right)^{*} \tau_{2}\right)
$$

we obtain

$$
\left(\pi^{B}\right)^{*}: \Gamma\left(\mathrm{T}^{\bullet} \cdot \bullet B\right) \rightarrow \Gamma\left(\mathrm{T}^{\bullet} \cdot \bullet M\right)
$$

Similarly we obtain

$$
\left(\pi^{F}\right)^{*}: \Gamma\left(\mathrm{T}^{\bullet \bullet} F\right) \rightarrow \Gamma\left(\mathrm{T}^{\bullet} \cdot \bullet M\right)
$$

$$
=" \pi B \int^{8} g
$$

Proposition 2.5.2. Let $g_{g w p}$ a generalized warped product metric on $M=B \times F$ as above.
(a) For each $b \in B$ the second fundamental form of $F^{b}:=\{b\} \times F$ in $\left(M, g_{g w p}\right)$ satisfies for all $U, V \in \mathscr{X}\left(F^{b}\right)$ and all $X \in \mathrm{~T}_{b} B \subset$ $\mathrm{T}_{(b, f)} M$

$$
g_{\mathrm{gwp}}\left(\overrightarrow{\mathrm{I}}^{F^{b}}(\forall, V), X\right)=-\frac{1}{2}\left(\partial_{X} \hat{g}\right)(\overleftarrow{U}, V)
$$

(b) For each $f \in F$ the second fundamental form of $B^{f}:=B \times\{f\}$ in $\left(M, g_{w}\right)$ vanishes.

$$
f \sim(B, f)
$$

$$
F \cong F^{b}
$$

Proof of Proposition 2.5.2:

"(a)": If we view $U, V \in \mathscr{X}\left(F^{b}\right)$ as vector fields on F, then $\tilde{U}:=$ $\left(\pi^{F}\right)^{*} U, \tilde{V}:=\left(\pi^{F}\right)^{*} V \in \mathscr{X}(M)$ are extensions of U, V. In other words \tilde{U} is the extension with $\left.\tilde{U}\right|_{(\tilde{b}, f)}=\left.U\right|_{(b, f)}$ for all $(\tilde{b}, f) \in M \cdot\left(\pi^{B}\right)^{*} X$
Let us extend X to $X \in \mathscr{X}(B)$, and set $\tilde{X}:=\left(\pi^{F} \Psi^{*} X \in \mathscr{X}(M)\right.$. Then $[\tilde{X}, \tilde{U}]=0$ and $[\tilde{X}, \tilde{V}]=0$. Let ∇ be the Levi-Civita connection for gems) We calculate

$$
\begin{aligned}
g_{g(v i v}^{f}\left(\vec{I}^{F^{b}}(U, V), X\right) & =g_{\mathrm{gwp}}\left(\nabla_{\tilde{U}} \tilde{V}, \tilde{X}\right) \\
& =\partial_{\tilde{U}} \underbrace{g_{\mathrm{gwp}}(\tilde{V}, \tilde{X})}_{=0}-g_{\mathrm{gwp}}\left(\tilde{V}, \nabla_{\tilde{U}} \tilde{X}\right) \\
& =0 \quad-g_{\mathrm{gwp}}\left(\tilde{V}, \nabla_{\tilde{X}} \tilde{U}\right),
\end{aligned}
$$

where we used $0=[\tilde{X}, \tilde{V}]=\nabla_{\tilde{X}} \tilde{U}-\nabla_{\tilde{U}} \tilde{X}$. Because of $\vec{\Pi}^{F^{b}}(U, V)=\vec{\Pi}^{F^{b}}(V, U)$ we get

$$
\begin{aligned}
2 g_{\mathrm{gwp}}\left(\overrightarrow{\mathrm{I}}^{F^{b}}(U, V), X\right) & =-g_{\mathrm{gwp}}\left(\tilde{V}, \nabla_{\tilde{X}} \tilde{U}\right)-g_{\mathrm{gwp}}\left(\tilde{U}, \nabla_{\tilde{X}} \tilde{V}\right) \\
& =-\partial_{\tilde{X}}\left(g_{\mathrm{gwp}}(\tilde{V}, \tilde{U})\right)=-\left(\partial_{\tilde{X}} \hat{g}\right)(U, V)
\end{aligned}
$$

\tilde{V} is constant in $B \Rightarrow[\tilde{X}, \tilde{V}]=0=\mu_{\tilde{\varepsilon}} \tilde{V}$
$\overline{\text { Page } 78} \quad \partial_{\tilde{x}}\left(\operatorname{gamp}_{\operatorname{arp}}(\tilde{v}, \tilde{u})\right)=\tilde{L}_{x}\left(g_{w p}\right)_{\text {Lorentzian Geometry }}$

$$
\begin{aligned}
& \partial_{\tilde{\gamma}}(\hat{g}(\hat{u}, \tilde{v}))=\operatorname{L}_{\tilde{\gamma}}(\hat{g} \quad(\tilde{u}, \hat{v})) \\
& =\left(L_{\tilde{x}} \hat{g}\right)(\tilde{u}, \tilde{v})+\hat{g} \quad\left(\tilde{e}_{\hat{\kappa}}^{\tilde{u}}, \tilde{v}\right) \\
& +\hat{g}(\hat{u} \underbrace{\ell_{\tilde{x}} \tilde{v}}_{=0}) \\
& =\left(\partial_{\tilde{\gamma}} \hat{g}\right)(\hat{u}, \tilde{v})
\end{aligned}
$$

"(b)": This proof can be carried out similarly for $X, Y \in \mathscr{X}\left(B^{f}\right)$ and $U \in \mathrm{~T}_{f} F$. One gets

$$
2 g_{\mathrm{gwp}}\left(\overrightarrow{\mathrm{I}}^{B^{f}}(X, Y), U\right)=-\left(\partial_{\tilde{U}} \check{g}\right)(X, Y),
$$

and $\left(\partial_{\tilde{U}} \check{g}\right)=0$ as \check{g} does not depend on f.

Remark 2.5.4. The above proposition says, roughly speaking, that the $-2 \vec{I}$ is the derivative of the semi-Riemannian metric on the submanifold F^{b} in normal directions. In fact one can show the following variation formula for the metric.

Let M be a semi-Riemannian submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}) with vector-valued second fundamental form \vec{I}. Let $f_{t}: \bar{M} \rightarrow \bar{M}$ be a family of diffeomorphisms, smoothly depending on $t \in(-\epsilon, \epsilon)$, and $f_{0}=$ id. We define the variation vector field $\left.\mathcal{V}\right|_{p}:=\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0} f_{t}(p)$ for $p \in{\underset{\sigma}{T}}^{M}$. We assume further that $\mathcal{V} \in \Gamma(\mathrm{N} M)$. Then

$$
\begin{aligned}
& g(x, \pi) \quad \partial \notin \hat{g} \\
& g(\mathcal{V}, \vec{\Pi})=-\left.\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0}\left(\left(f_{t}^{*} g\right)_{\mathrm{T} M \times \mathrm{T} M}\right) .
\end{aligned}
$$

This specializes to the proposition by considering $\bar{M}=B \times F, M=\{b\} \times$ $F, \mathcal{V}=\mathbb{Z}$ This result can be proved by slight extending arguments in the proof of the variational formula for the area.

Definition 2.5.5. A vector field $X \in \mathscr{X}(B \times F)$ is called vertical, if for any $x=(b, f) \in M$ we have $\left.X\right|_{x} \in\{0\} \times \mathrm{T}_{f} F$. A vector field $X \in \mathscr{X}(B \times F)$ is called horizontal, if for any $x=(b, f) \in M$ we have $\left.X\right|_{x} \in \mathrm{~T}_{b} B \times\{0\}$. Thus any $X \in \mathscr{X}(B \times F)$ can be written uniquely as $X=X_{\text {hor }}+X_{\text {ver }}$, where $X_{\text {hor }}$ is horizontal, called the horizontal part of X, and where $X_{\text {ver }}$ is vertical, called the vertical part of X. and the Codas ai formula
The Gauß formula implies: $X_{L} Y, Z$ herizental; M_{1}, W vertical
Corollary 2.5.6. With the above notation we have for horizontal ventor fields $X, Y, Z \in \mathscr{X}(M)$

$$
\begin{aligned}
& R(X, Y) Z=\check{R}(X, Y) Z . \\
& \prod_{\text {of }}^{R}\left(\Pi, g_{g \sim p}\right) \quad \text { of }(B, y)=\left(B^{f}, \tilde{g}\right) \quad B^{\delta}=\{f\} \times B
\end{aligned}
$$

Definition 2.5.7. A warped product metric on $M=B \times F$ is a generalized warped product metric $g_{w}=\check{g}+\hat{g}$ with the notation as above, such that there is a semi-Riemannian metric g^{F} on F and a smooth positive function $w \in \mathcal{C}^{\infty}\left(B, \mathbb{R}_{>0}\right)$ such that $\hat{g}^{b}=w^{2} g^{F}$. We thus have

$$
g_{w}=\check{g}+\underbrace{w^{2} g^{F}}_{\hat{g}} .
$$

In this special case we obtain

$$
w^{n} g(u, v)
$$

$$
\vec{\Pi}^{F^{b}}(U, V)=-\hat{g}(U, V)\left(\underset{\sim}{\operatorname{grad} \log w)} \int \frac{1}{w} \operatorname{grad} w\right.
$$

Note that for a function $f \in \mathcal{C}^{\infty}(B)$ the g_{w}-gradient of $f \circ \pi^{B}$ coincides with the pullback of the \check{g}-gradient $\operatorname{grad} f \in \mathscr{X}(B) \subset \mathscr{X}(M)$. Hence we may also write grad instead of grad.

$$
(\underline{R}(x, y), \tilde{x}, \tilde{x})=\langle\tilde{R}(x, y|z, \tilde{x}\rangle+\langle\underbrace{\overrightarrow{\mathbb{I}}}_{=6}(x, z), \vec{\pi}(y, \tilde{=})\rangle
$$

\tilde{x} horia.

$$
\begin{aligned}
& B^{f} \subset M=B \times F \\
& \Rightarrow \pi \frac{\operatorname{sim}^{2 m}}{} R(x, y \mid Z)=\tilde{R}(X, y) Z
\end{aligned}
$$

horizontal
Codazsi V retial, nomal to B^{f}

$$
\begin{aligned}
\langle R(X, y) z, V) & = \pm(\underbrace{(\nabla x \pi)}_{=0}(y, z)-\underbrace{(\nabla \pi)}_{=0}(x, z)) \\
& =0 \\
\pi \underbrace{\omega \pi}_{=0}(R(x, y) z) & =0
\end{aligned}
$$

Vertical

Example 2.5.8 ((Hyper-)surfaces of revolution). We assume that we have a smooth function $f:(a, b) \rightarrow \mathbb{R}_{>0}$. We consider the curve $c(t):=$ $(t, f(t))$ and the submanifold

$$
M_{\mathrm{rot}}:=\left\{(t, x)^{\top} \in(a, b) \times \mathbb{R}^{n} \mid f(t)=\|x\|\right\} \subset \mathbb{R}^{n+1} .
$$

Riemannian or Lorentzian
Last Lecture

Example 2.5.9 (Robertson-Walker spacetimes).
A Robertson-Walker spacetime is a manifold $M=(a, b) \times F$ with the Lorentzian metric $-\mathrm{d} t \otimes \mathrm{~d} t+w(t)^{2} \hat{g}$ where (F, \hat{g}) is Riemannian manifold of constant sectional curvature.

Example 2.5.10 (Rotationally symmetric Riemannian metrics). Let g be a Riemannian metric on $\mathbb{R}^{n} \backslash B_{R}(0)$ which is invariant under the action of $O(n)$ on $\mathbb{R}^{n} \backslash B_{R}(0)$. We define for $r \geq R$ let $\ell(r)$ be the length of the straigh line from $(R, 0, \ldots)^{\top}$ to $(r, 0, \ldots)^{\top}$, and let $\ell_{\infty}:=\lim _{r \rightarrow \infty} \ell(r)$. Then we define

$$
\varphi: \mathbb{R}^{n}, B_{R}(0) \rightarrow \overbrace{S_{S^{n-1}} \times\left(0, \ell_{\infty}\right)}^{\overbrace{\sim}^{F}}, x \mapsto\left(\frac{x}{\|x\|}, \ell(\|x\|)\right)
$$

Then $\left(\varphi^{-1}\right)^{*} g$ is a Riemannian warped product metric on $S^{n-1} \times\left(0, \ell_{\infty}\right)$ given by

$$
\mathrm{d} t \otimes \mathrm{~d} t+w(t)^{2} g^{S^{n-1}}
$$

where $g^{S^{n-1}}$ is the standard metric on S^{n-1}.

Exercise 2.5.11. With the above notation calculate for vertical vector fields $U, V, W \in \mathscr{X}(M)$

$$
R(U, V) W=\hat{R}(U, V) W-\frac{\check{g}(\operatorname{grad} w, \operatorname{grad} w)}{w^{2}}(\hat{g}(V, W) U-\hat{g}(U, W) V) .
$$

Hints: you have to consider both the horizontal and the vertical part of this equation. Consider the subsection on homotheties.

for $\left(M, g_{a v}\right)$

Lemma 2.5.12. For $X \in \mathscr{X}(B)$ and $V \in \mathscr{X}(F)$ we have $\nabla_{X} V=$ $\nabla_{V} X=\left(\partial_{X} \log w\right) V$.

$$
B^{6}=8+\{f\} C M=B+F
$$

Proof: As X acts on functions by derivation in the B-direction, and V acts by derivation in the F direction, Schwarz's theorem implies $[X, V]=0$ in the sense of commutator of vector fields on M. This implies $\nabla_{V} X=\nabla_{X} V$. For any horizontal vector field Y we calculate

$$
g_{w}\left(\nabla_{X} V, Y\right)=\partial_{X} \overbrace{g_{w}(V, Y)}^{=0}-g_{w}\left(V, \nabla_{X} Y\right)=-g_{w}(V, \overbrace{\vec{I}^{B}(X, Y)}^{=0})=0,
$$

thus $\nabla_{X} V$ is vertical. For any vertical vector field U we calculate

$$
\begin{aligned}
g_{w}\left(\nabla_{V} X, U\right) & =\partial_{V} \overbrace{g_{w}(X, U)-g_{w}\left(X, \nabla_{V} U\right)}^{=0} \quad F^{b}=\{b\} \not g_{w}\left(X, \vec{I}^{F}(V, U)\right) \\
& =\left(\partial_{X} \log w\right) g_{w}(V, U),
\end{aligned}
$$

and this implies the statement.
For the following theorem note, that similar to the gradient, the pullback of the Hessian of a function $f \in \mathcal{C}^{\infty}(B)$ to W coincides with the Hessian of $f \circ \pi^{B}$. Thus we have $\breve{\nabla}^{2} f=\nabla^{2} f$.

Theorem 2.5.13 (Riemann curvature tensor for warped products). Let g_{w} be a warped product on $B \times F$ with the notation from above. Let X, Y, Z be horizontal and let U, V, W be vertical vector fields on M. Then

$$
\begin{align*}
R(X, Y) Z & =\check{R}(X, Y) Z \tag{2.5.1}\\
R(X, U) Y & =\frac{\left(\nabla^{2} w\right)(X, Y)}{w} U \\
& =\left(\left(\nabla^{2} \log w\right)(X, Y)+\left(\partial_{X} \log w\right)\left(\partial_{Y} \log w\right)\right) U \tag{2.5.2}\\
R(U, V) X & =0 \tag{2.5.3}\\
R(X, Y) U & =0 \tag{2.5.4}\\
\mathbb{K} \quad R(X, U) V & =-\frac{g_{w}(U, V)}{w} \nabla_{X}(\operatorname{grad} w) \tag{2.5.5}\\
R(U, V) W & =\hat{R}(U, V) W \\
& -\frac{g(\operatorname{grad} w, \operatorname{grad} w)}{w^{2}}(\hat{g}(V, W) U-\hat{g}(U, W) V) . \tag{2.5.6}
\end{align*}
$$

Proof: At several places we will use $\partial_{X} \log w=\frac{\partial_{X} w}{w}$.
"(2.5.1)": See Corollary 2.5.6.
"(2.5.2)": We give two formulas, as both are helpful in applications. The additional transformations are given in blue.

$$
\begin{aligned}
\nabla_{X} \nabla_{U} Y & \stackrel{\text { Lem. } 2.5 .12}{=} \\
\stackrel{\text { Le }}{=} & \nabla_{X}\left(\left(\partial_{Y} \log w\right) U\right) \\
= & \left(\partial_{X} \partial_{Y} \log w+\left(\partial_{Y} \log w\right)\left(\partial_{X} \log w\right)\right) U \\
= & \frac{\partial_{X} \partial_{Y} w}{w} U
\end{aligned}
$$

As we know that $\vec{I}^{B^{f}}=0$ for all $f \in F$, we know that $\nabla_{X} Y=\check{\nabla}_{X} Y$.

$$
\begin{aligned}
\nabla_{U} \nabla_{X} Y & =\nabla_{U} \check{\nabla}_{X} Y=\left(\partial_{\check{\nabla}_{X} Y} \log w\right) U \\
& =\frac{\partial_{\check{\nabla}_{X} Y} w}{w} U .
\end{aligned}
$$

$$
\begin{aligned}
& R(x, u) Y=\nabla_{x} \nabla_{u} V^{v}-\nabla_{u} \nabla_{x} Y-\nabla_{[x, u]}{ }^{V} \\
& V_{x} V=\left(\nabla_{x}(\log \omega)\right) V \\
& 11 \\
& 1 v^{x} \\
& \partial_{x} \partial_{y} \log w=\partial_{x} \frac{\partial_{y} w}{w}=\frac{\partial_{x} \partial_{y} w}{w} \\
& -\frac{\left(\partial_{y} \omega\right)}{w^{2}}{ }^{\left(\partial_{x} w\right)} \\
& =\frac{\partial_{x} \partial_{\psi} \omega}{w}-\left(\partial_{x}(\lg \omega)\right)\left(\partial_{Y}(\lg \omega)\right)
\end{aligned}
$$

Because of $[X, U]=0$ this provides the requested formulae. "(2.5.3)": We get

$$
\begin{aligned}
\nabla_{U} \nabla_{V} X & \stackrel{\text { Lem. 2.5.12 }}{=} \\
& =\underbrace{\nabla_{U}\left(\left(\partial_{X} \log w\right) V\right)}_{=0} \\
& \underbrace{}_{U} \partial_{X} \log w) \\
& +\left(\partial_{X} \log w\right) \nabla_{U} V
\end{aligned}
$$

and thus using again Lemma 2.5.12 for $\nabla_{[U, V]} X$

$$
R(U, V) X=\left(\partial_{X} \log w\right)\left(\nabla_{U} V-\nabla_{V} U-[U, V]\right)=0 .
$$

"(2.5.4)": $R(X, Y) U$ is horizontal because of

$$
g(R(X, Y) U, V)=g(R(U, V) X, Y) \stackrel{(2.5 .3)}{=} 0 .
$$

On the other hand

$$
g(R(X, Y) U, Z)=-g(R(X, Y) Z, U) \stackrel{(2.5 .1)}{=} 0 .
$$

"(2.5.5)": $R(X, U) V$ is horizontal because of

$$
g(R(X, U) V, W)=g(R(V, W) X, U) \stackrel{(2.5 .3)}{=} 0 .
$$

For the horizontal part we calculate

$$
\begin{aligned}
g(R(X, U) V, Y) & = \\
\stackrel{(2.5 .2)}{=} & -g\left(\frac{\left(\nabla^{2} w\right)(X, Y)}{w} U, V\right) \\
& \stackrel{(\star)}{=}
\end{aligned}-\frac{g_{w}(U, V)}{w} g\left(\nabla_{X}(\operatorname{grad} w), Y\right),
$$

where we used at the transformation (*) the remark after Defini-

