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2.2 Second fundamental form and the Gauß formula

Recapitulation before the lecture on 03.05.:

Additions at the end of Secion 2.1: Note that for functions f ∈C∞(M) we have according to Definition 2.1.14

∇f = ˆf = df ∈ (T∗M).
We can derivate once again according to Definition 2.1.14 and get∇2f ∶= ∇(∇f), and we obtain

(∇2f)(X, Y ) = �∇(df)�(X, Y ) = �∇X(df)�(Y )
= ˆX(df(Y )) − df(∇XY ) = ˆXˆY f − ˆ∇XY f

The tensor ∇2f ∈ (T0,2M) is called the Hessian of f , and we also

write it as Hess f . The fact that ∇ is torsionfree is equivalent to(∇2f)(X, Y ) = (∇2f)(Y, X) for all X, Y ∈ X (M).
Remarks.

(a) For a vector field X ∈ X (M) and a function f ∈ C∞(M), we can

show ∇X grad f = (∇X(df))#. In order to show this, we check

for Y, Z ∈ X (M)
(∇XY )♭(Z) = g(∇XY, Z) = ˆX(g(Y, Z)) − g(Y,∇XZ)

= ˆX(Y ♭(Z)) − Y ♭(∇XZ) = �∇X(Y ♭)� (Z),
which proves (∇XY )♭ = ∇X(Y ♭) and which we apply to Y =
grad f to get the statement.

(b) We have (∇2f)(X, Y ) = g (∇X(grad f), Y ). In order to show this

we calculate

(∇2f)(X, Y ) = (∇Xdf)(Y ) = �∇X(grad f)♭�(Y )
= �∇X grad f�♭(Y )) = g(∇X grad f, Y )
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2 Semi-Riemannian manifolds and their submanifolds

The Laplacian f is defined as

f �x ∶= −
dim M�

i=1 ‘i(∇2f)(ei, ei),
where (e1, . . . , edim M) is a generalized orthonormal basis of (TxM, gx).
The linear map Ck+2(M) → Ck(M), f � f for some k ∈ N0 ∪ ∞ is

called the Laplace operator or the Laplace-Beltrami operator of(M, g).
Attention: Sign of

Last lecture: We studied submanifolds ÿ ∶ M � M . Here M car-

ries a semi-Riemannian metric g, and M is such that ÿ∗g is a semi-

Riemannian metric on M .

———

2.3 Semi-Riemannian hypersurfaces

We now specialize to the case that M is hypersurfaces in M , i. e.,

dim M = dim M − 1. Again M is called a semi-Riemannian hy-

persurface if g ∶= gTM⊗TM = ÿ∗g is non-degenerate. In this case the

normal bundle NM → M has rank 1. If M is connected this implies

that g�NM⊗NM is either positive definite (then we say the hypersur-

face has sign sgn(M) ∶= +1, or it is negative definite (then the sign is

sgn(M) = −1).

Example 2.3.1. Assume t is a regular value of the smooth func-

tion. f ∶ M → R. Then M ∶= f−1(t) is a submanifold, in fact a

hypersurface, and TpM = ker dpf = �grad f �p�⊥ for p ∈ M . If TpM

is a non-degenerate subspace, we can take a generalized orthonormal

basis of TpM and complete it to a generalized orthonormal basis of

TpM by joining
���grad f �p, grad f �p��−1

grad f �p. Thus if TpM is non-
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2.3 Semi-Riemannian hypersurfaces

degenerate, grad f is non-zero and non-lightlike. Conversely if TpM is

non-zero and non-lightlike, then TpM = �grad f �p�⊥ is non-degenerate.

Thus if M is given as f−1(t) for a regular value t, then M is a semi-

Riemannian hypersurface if and only if grad f is nowhere lightlike and

this holds if and only if df is nowhere lightlike.

Definition 2.3.2. A unit normal field of a semi-Riemannian sub-

manifold M in a semi-Riemannian manifold (M, g) is a section ‹ ∈
(NM) with g(‹, ‹) ∈ {−1,+1}.
We say M is co-orientable if a unit normal field exists, and the

choice of such a unit normal field is called a co-orientation.

Example 2.3.3. The hypersurface in the preceding example is co-

orientable.

A unit normal field is given by ‹ ∶=���grad f �p, grad f �p��−1
grad f �p.

Definition 2.3.4. Assume that ‹ is a unit normal field on the hyper-

surface M ⊂ M . Then we define for X ∈ X (M) the shape operator

S(X) ∶= −∇X‹.

We calulate 0 = ˆXg(‹, ‹) = 2g(∇X‹, ‹) = −2g(S(X), ‹), and thus

S(X) ∈ X (M). The map X � S(X) is C∞(M)-linear and thus given

by a tensor S ∈ (T∗M ⊗TM) = (End(TM)).
Lemma 2.3.5. For all X, Y ∈ X (M) we have

g(S(X), Y ) = g(�II(X, Y ), ‹)
Proof:

0 = ˆX

≡0���������������������
g(‹, Y ) = g(∇X‹, Y ) + g(‹,∇XY )

= − g(S(X), Y ) + g(‹, �II(X, Y )).
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2 Semi-Riemannian manifolds and their submanifolds

Because of the lemma, it is convenient to define the (scalar-valued)

second fundamental form as II(X, Y ) = g(�II(X, Y ), ‹). Note that

this implies the sign �II(X, Y ) = sgn(M)II(X, Y )‹.

Example 2.3.6 (Hyperbolic space). Let again � ● , ● � be the Lorentzian

standard scalar product of Rm,1. Let ⊥⊥ denote orthogonality with re-

spect to � ● , ● �, e. g., x⊥⊥ or V ⊥⊥ is the orthogonal space for � ● , ● �. We

define

Hm ∶= �x = (x0, x1, . . . , xm)� ∈ Rm,1 � �x, x� = −1 and x0 > 0�.

A unit normal field is given by the identity x � ‹(x) = x, as we have�x, x� = −1 and TpHm = x⊥⊥. (More on Exercise sheet 3). This is a

model for hyperbolic space.

Theorem 2.3.7 (Gauß formula for hypersurfaces). Let M ⊂ M be a

semi-Riemannian hypersurface with unit normal field ‹, ‘ ∶= �‹, ‹� ∈{−1,+1} its sign.

(i) For X, Y, Z ∈ TpM we have

R(X, Y )Z = R(X, Y )Z + ‘ (�S(Y ), Z�S(X) − �S(X), Z�S(Y )) .
(ii) For any E = span{X, Y } ∈ G2(M, g) we have

sec(E) = sec(E) + Á
�S(X), X��S(Y ), Y �− < S(X), Y �2

�X, X��Y, Y � − �X, Y �2

= sec(E) + ‘ det S�E
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2.3 Semi-Riemannian hypersurfaces

Example 2.3.8 (De Sitter spacetime). An important example of a

Lorentzian manifold is de Sitter spacetime which is the pseudo-

sphere defined for some r > 0 as

S
n,1(r) ∶= �x ∈ Rn+1,1 � �x, x� = r2� .

The de Sitter space Sn,1(r) is diffeomorphic to Sn × R, see Exercise

Sheet 1, Exercise 2, thus for n ≥ 2 it is simply connected. This example

is treated in Exercise Sheet 3, Exercise 1 – up to scaling by r.

Example 2.3.9 (Anti-de Sitter spacetime). Let us consider for some

r > 0 the pseudohyperbolic space

H
n,1(r) ∶= �x ∈ Rn,2 � �x, x�n,2 = −r2� .

The space Hn,1(r) is diffeomorphic to Rn × S1, see Exercise Sheet 1,

Exercise 2, thus it is never simply connected. Its universal covering

H̃n,1(r), which is diffeomorphic to Rn × R = Rn+1 is called anti-de

Sitter spacetime. This example is treated in Exercise Sheet 3, Ex-

ercise 1 – up to scaling by r.

Physical Interpretation 2.3.10. The Minkowski space Rn,1, de Sit-

ter spacetime Sn,1 and anti-de Sitter spacetime H̃n,1(r) are vaccum

solutions of the Einstein equations for vanishing, positive and negative

cosmological constant.

Note the normal bundle also carries a natural connection, namely

for X ∈ X (M) and V ∈ (NM) we define

∇⊥⊥XV ∶= fi
N(∇XV ).
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2 Semi-Riemannian manifolds and their submanifolds

We then define

(∇Z
�II)(X, Y ) = ∇⊥⊥Z��II(X, Y )� − �II(∇ZX, Y ) − �II(X,∇ZY ).

Theorem 2.3.11 (Codazzi). For vector fields X, Y, Z ∈ X (M) on a

semi-Riemannian submanifold in a semi-Riemannian manifold (M, g)
we have:

fi
N(R(X, Y )Z) = (∇X

�II)(Y, Z) − (∇Y
�II)(X, Z).

Proof: By defintion of R we have:

fi
N �R(X, Y )Z� = fi

N �∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z� .

We calculate for each summand:

fi
N (∇X∇Y Z) = fi

N �∇X�∇Y Z + �II(Y, Z)��
= �II (X,∇Y Z) +∇⊥⊥X��II(Y, Z)�
= (∇X

�II)(Y, Z) + �II (X,∇Y Z) + �II(∇XY, Z) + �II(Y,∇XZ),
and obviously the same holds when X and Y are permuted.

fi
N �∇[X,Y ]Z� = �II([X, Y ], Z) = �II(∇XY, Z) − �II(∇Y X, Z)

We collect together and obtain

fi
N �R(X, Y )Z� = (∇X

�II)(Y, Z) − (∇Y
�II)(X, Z)

as claimed.
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2.5 Warped products

2.4 Homotheties

Definition 2.4.1. Two semi-Riemannian metrics g and g̃ on a man-

ifold M are homothetic, if there is a constant t > 0 such that g̃ = t2g.

Lemma 2.4.2. We assume the above notation, and we indicate by a

tilde (or no tilde) whether the following geometric objects are defined

with respect to g̃ or with respect to g. Then for X, Y, Z, WX (M) we

have

∇̃XY = ∇XY

R̃(X, Y )Z = R(X, Y )Z
g̃�R̃(X, Y )Z� = t2g�R(X, Y )Z�

�sec(E) = t−2 sec(E)�ric(X) = ric(X)�Ric(X) = t−2 Ric(X)�RIC(RX) = t−2 RIC(RX)�scal = t−2 scal

Proof: Consider the properties defining the Levi-Civita connection.

They do not depend on the semi-Riemann metric, except Product

Rule II. By passing from the metric g to g̃ both sides of Product

Rule II are changed by a factor t2, thus the product rule II for g̃ is

also equivalent to the one for g. Thus the uniqueness statement in

Theorem 2.1.2 implies ∇̃XY = ∇XY .

The other transformation formulas now follow with elementary cal-

culations.
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2 Semi-Riemannian manifolds and their submanifolds

2.5 Warped products

For smooth manifolds B and F we will consider their product manifold

M = B × F . Sometimes B will be considered as the basis of M and{x} × F , x ∈ B as its fibers. The projection to B resp. to F will be

denoted by fi
B resp. fi

F . We assume that B carries a semi-Riemannian

metric ǧ with associated Levi-Civita connection ∇̌ and curvatures Ř,

ˇsec, řic, ˇscal,. . . . On F we do not consider one single metric, but

a smooth family ĝb ∈ (T∗F ⊙ T∗F ) is semi-Riemannian manifolds,

depending smoothly on b ∈ B.

Definition 2.5.1. On T(b,f)(B ×F ) = TbB ⊕TfF we define the inner

product g
gwp(b,f) ∶= ǧb ⊕ ĝb

f
, i. e., for X1, X2 ∈ TbB and Y1, Y2 ∈ TfF we

define

g
gwp(b,f)�(X1, Y1), (X,Y2)� ∶= ǧb(X1, X2) + ĝb

f(Y1, Y2).
This defines a semi-Riemannian metric ggwp on M = B × F . Metrics

of this form will be called generalized warped product metrics.

Alternatively we could say

g
gwp(b,f) = �fiB�∗ ǧ + ĝ

where ĝ ∈ (T∗M⊙T∗M) is defined by ĝ(b,f) = 0+ ĝb
f
. Note that we can

view ĝ as a function B → (T∗F ⊙T∗F ) and the smooth dependense

on b allows to define ˆX ĝ ∈ (T∗F ⊙T∗F ) for any X ∈ TB.
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