Differential Geometry II Lorentzian Geometry

Lecture Notes

O: Alain Riazuelo, IAP/UPMC/CNRS, license CC-BY-SA 3.0

Prof. Dr. Bernd Ammann

Summer term 2021

University of Regensburg

Presentation Version

Version of May 3, 2021

Recapitulation before the lecture on 03.05.:

Additions at the end of Secion 2.1: Note that for functions $f \in C^{\infty}(M)$ we have according to Definition 2.1.14 $\operatorname{Semi}^{-} \operatorname{Riem}^{+}$ $\operatorname{Additions} at the end of Secion 2.1: Note that for functions <math>f \in C^{\infty}(M)$ we have according to Definition 2.1.14 $\operatorname{Semi}^{-} \operatorname{Riem}^{+}$ $\operatorname{Additions} f \in C^{\infty}(M)$ we have according to Definition 2.1.14 $\operatorname{Semi}^{-} \operatorname{Riem}^{+}$ $\operatorname{Additions} f \in C^{\infty}(M)$ we have according to Definition 2.1.14 $\operatorname{Semi}^{-} \operatorname{Riem}^{+}$ $\operatorname{Additions} f \in C^{\infty}(M)$ $\operatorname{Additions} f \in C^{\infty}(M)$

We can derivate once again according to Definition 2.1.14 and get $\nabla^2 f := \nabla(\nabla f)$, and we obtain

$$(\nabla^{2}f)(X,Y) = (\nabla(\mathrm{d}f))(X,Y) = (\nabla_{X}(\mathrm{d}f))(Y)$$

$$= \partial_{X}(\mathrm{d}f(Y)) - \mathrm{d}f(\nabla_{X}Y) = \partial_{X}\partial_{Y}f - \partial_{\nabla_{X}Y}f$$

$$= \partial_{X}(\mathrm{d}f(Y)) - \mathrm{d}f(\nabla_{X}Y) = \partial_{X}\partial_{Y}f - \partial_{\nabla_{X}Y}f$$

The tensor $\nabla^2 f \in \Gamma(\mathbb{T}^{0,2}M)$ is called the **Hessian** of f, and we also write it as Hess f. The fact that ∇ is torsionfree is equivalent to $(\nabla^2 f)(X,Y) = (\nabla^2 f)(Y,X)$ for all $X, Y \in \mathscr{X}(M)$.

Remarks.

(a) For a vector field $X \in \mathscr{X}(M)$ and a function $f \in \mathcal{C}^{\infty}(M)$, we can show $\nabla_X \operatorname{grad} f = (\nabla_X(\mathrm{d} f))^{\#}$. In order to show this, we check for $Y, Z \in \mathscr{X}(M)$

$$(\nabla_X Y)^{\flat}(Z) = g(\nabla_X Y, Z) = \partial_X (g(Y, Z)) - g(Y, \nabla_X Z)$$

= $\partial_X (Y^{\flat}(Z)) - Y^{\flat} (\nabla_X Z) = (\nabla_X (Y^{\flat}))(Z),$

which proves $(\nabla_X Y)^{\flat} = \nabla_X (Y^{\flat})$ and which we apply to $Y = \operatorname{grad} f$ to get the statement.

(b) We have $(\nabla^2 f)(X, Y) = g(\nabla_X(\operatorname{grad} f), Y)$. In order to show this we calculate

$$(\nabla^2 f)(X,Y) = (\nabla_X df)(Y) = (\nabla_X (\operatorname{grad} f)^{\flat})(Y)$$
$$= (\nabla_X \operatorname{grad} f)^{\flat}(Y)) = g(\nabla_X \operatorname{grad} f,Y)$$

$$\begin{cases} v^{2} f \int (x_{i} y_{i}) = \partial_{x} \partial_{y} f - \partial_{y} y_{i} f \\ (v^{2} f \int (y_{i} x_{i}) = \partial_{y} \partial_{x} f - \partial_{y} y_{i} f \\ - \partial_{y} y_{i} f - \partial_{y} y_{i} f \\ - \partial_{y} y_{i} f - \partial_{y} y_{i} f \\ - \partial_{y} y_{i} f - \partial_{y} y_{i} f \\ - \partial_{y} y_{i} f - \partial_{y} y_{i} f \\ - \partial_{y$$

$$\begin{array}{c}
\Pi^{n} & \Psi \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

MCA is a sabard of such a pexists.

The **Laplacian** Δf is defined as

$$\Delta f|_{x} \coloneqq -\sum_{i=1}^{\dim M} \epsilon_{i}(\nabla^{2}f)(e_{i}, e_{i}),$$

where $(e_1, \ldots, e_{\dim M})$ is a generalized orthonormal basis of $(T_x M, g_x)$. The linear map $\mathcal{C}^{k+2}(M) \to \mathcal{C}^k(M), f \mapsto \Delta f$ for some $k \in \mathbb{N}_0 \cup \infty$ is called the **Laplace operator** or the **Laplace-Beltrami operator** of (M, g).

Attention: Sign of Δ

Last lecture: We studied submanifolds $\iota : M \hookrightarrow \overline{M}$. Here \overline{M} carries a semi-Riemannian metric \overline{g} , and M is such that $\iota^* \overline{g}$ is a semi-Riemannian metric on M.

2.3 Semi-Riemannian hypersurfaces

We now specialize to the case that M is hypersurfaces in \overline{M} , i.e., dim $M = \dim \overline{M} - 1$. Again M is called a **semi-Riemannian hy**persurface if $g := \overline{g}_{TM \otimes TM} = \iota^* \overline{g}$ is non-degenerate. In this case the normal bundle $NM \to M$ has rank 1. If M is connected this implies that $\overline{g}|_{NM \otimes NM}$ is either positive definite (then we say the hypersurface has sign sgn(M) := +1, or it is negative definite (then the sign is sgn(M) = -1).

Example 2.3.1. Assume t is a regular value of the smooth function. $f : \overline{M} \to \mathbb{R}$. Then $M \coloneqq f^{-1}(t)$ is a submanifold, in fact a hypersurface, and $\underline{T}_p M = \ker d_p f = \left(\operatorname{grad} f|_p\right)^{\perp}$ for $p \in M$. If $\underline{T}_p M$ is a non-degenerate subspace, we can take a generalized orthonormal basis of $\underline{T}_p M$ and complete it to a generalized orthonormal basis of $\underline{T}_p \overline{M}$ by joining $\sqrt{|\langle \operatorname{grad} f|_p, \operatorname{grad} f|_p \rangle|}^{-1}$ grad $f|_p$. Thus if $\underline{T}_p M$ is non-

Page 68 Grand $f = (df)^{\text{#}}$

Lorentzian Geometry

KINT

goalf

degenerate, grad f is non-zero and non-lightlike. Conversely if $\mathcal{T}_p M$ is non-zero and non-lightlike, then $\mathcal{T}_p M = \left(\operatorname{grad} f |_p \right)^{\perp}$ is non-degenerate. Thus if M is given as $f^{-1}(t)$ for a regular value t, then M is a semi-Riemannian hypersurface if and only if $\operatorname{grad} f$ is nowhere lightlike and this holds if and only if df is nowhere lightlike.

Definition 2.3.2. A unit normal field of a semi-Riemannian submanifold M in a semi-Riemannian manifold $(\overline{M}, \overline{g})$ is a section $\nu \in \Gamma(NM)$ with $\overline{g}(\nu, \nu) \in \{-1, +1\}$.

We say M is co-orientable if a unit normal field exists, and the choice of such a unit normal field is called a co-orientation. f - 1 (f)

Example 2.3.3. The hypersurface in the preceding example is coorientable.

A unit normal field is given by $\nu \coloneqq \sqrt{|\langle \operatorname{grad} f|_p, \operatorname{grad} f|_p \rangle|}^{-1} \operatorname{grad} f|_p$.

Definition 2.3.4. Assume that ν is a unit normal field on the hypersurface $M \subset \overline{M}$. Then we define for $X \in \mathscr{X}(M)$ the shape operator $S(X) \coloneqq -\overline{\nabla}_X \nu$. $\underbrace{\pm}_{\mathcal{A}} \mathcal{A}$

We calulate $0 = \partial_X [\overline{g}(\nu, \nu)] = 2g(\overline{\nabla}_X \nu, \nu) = -2g(S(X), \nu)$, and thus $S(X) \in \mathscr{X}(M)$. The map $X \mapsto S(X)$ is $\mathcal{C}^{\infty}(M)$ -linear and thus given by a tensor $S \in \Gamma(T^*M \otimes TM) = \Gamma(\operatorname{End}(TM))$.

Lemma 2.3.5. For all $X, Y \in \mathscr{X}(M)$ we have

$$g(S(X),Y) = \overline{g}(\overline{II}(X,Y),\nu)$$

Proof:

$$0 = \partial_X \overline{\overline{g}(\nu, Y)} = \overline{g}(\overline{\nabla}_X \nu, Y) + \overline{g}(\nu, \overline{\nabla}_X Y)$$
$$= -\overline{g}(S(X), Y) + \overline{g}(\nu, \vec{\Pi}(X, Y)).$$

hypersoface

Because of the lemma, it is convenient to define the (scalar-valued) second fundamental form as $II(X,Y) = \overline{g}(\vec{II}(X,Y),\nu)$. Note that this implies the sign $\vec{II}(X,Y) = sgn(M)II(X,Y)\nu$.

Example 2.3.6 (Hyperbolic space). Let again $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ be the Lorentzian standard scalar product of $\mathbb{R}^{m,1}$. Let \mathbb{I} denote orthogonality with respect to $\langle\!\langle \cdot, \cdot \rangle\!\rangle$, e.g., $x^{\mathbb{I}}$ or $V^{\mathbb{I}}$ is the orthogonal space for $\langle\!\langle \cdot, \cdot \rangle\!\rangle$. We define $\mathcal{H}^{\mathcal{M}} = \int_{-1}^{-1} \left(-1\right) \cap \left\{\chi^{\circ} > \mathcal{O}\right\} \qquad \int_{-1}^{\infty} \int_{-1}^{\infty} \left\{\chi^{\circ} > \mathcal{O}\right\} \qquad \int_{-1}^{\infty} \int_{-1}^{\infty} \left\{\chi^{\circ} > \mathcal{O}\right\}$

 $H^{m} := \{ x = (x^{0}, x^{1}, \dots, x^{m})^{\mathsf{T}} \in \mathbb{R}^{m,1} \mid \langle\!\langle x, x \rangle\!\rangle = -1 \text{ and } x^{0} > 0 \}.$

A unit normal field is given by the identity $x \mapsto \nu(x) = x$, as we have $\langle\!\langle x, x \rangle\!\rangle = -1$ and $T_{\mathcal{X}} H^m = x^{\perp}$. (More on Exercise sheet 3). This is a model for hyperbolic space. $\gamma = x$

Theorem 2.3.7 (Gauß formula for hypersurfaces). Let $M \in \overline{M}$ be a semi-Riemannian hypersurface with unit normal field ν , $\epsilon \coloneqq \langle \nu, \nu \rangle \in \{-1, +1\}$ its sign. (i) For V V Z, To M and Γ ($\widehat{R} (X \mathcal{H} \not\subseteq \widehat{Z})$)

(i) For $X, Y, Z \in T_p M$ we have

$$R(X,Y)Z \neq \overline{R}(X,Y)Z + \epsilon(\langle S(Y), Z \rangle S(X) - \langle S(X), Z \rangle S(Y)).$$

(ii) For any $E = \operatorname{span}\{X, Y\} \in G_2(M, g)$ we have

$$\operatorname{sec}(E) = \overline{\operatorname{sec}}(E) + \varepsilon \frac{\langle S(X), X \rangle \langle S(Y), Y \rangle - \langle S(X), Y \rangle^2}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2}$$
$$= \overline{\operatorname{sec}}(E) + \epsilon \det S|_E$$
$$\operatorname{Sec}(E) = \underbrace{\Im \left(\mathbb{R}(X \cup \mathcal{I}, \mathcal{I}, \mathcal{I}) \right)}_{\operatorname{Page} 70} \operatorname{R}(X \cup \mathcal{I}, \mathcal{I}, \mathcal{I}) = \operatorname{Constan} \operatorname{Geometry}^2$$

+1

 $Y \in \mathcal{N} [T\mathcal{N}]$ $Y \in \mathcal{P} (T\mathcal{N} [\mathcal{N}])$

Example 2.3.8 (De Sitter spacetime). An important example of a Lorentzian manifold is de Sitter spacetime which is the pseudosphere defined for some r > 0 as sign (Shill)

$$\mathbb{S}^{n,1}(r) \coloneqq \left\{ x \in \mathbb{R}^{n+1,1} \mid \langle \langle x, x \rangle \rangle = r^2 \right\}.$$

The de Sitter space $\mathbb{S}^{n,1}(r)$ is diffeomorphic to $\mathbb{S}^n \times \mathbb{R}$, see Exercise Sheet 1, Exercise 2, thus for $n \ge 2$ it is simply connected. This example is treated in Exercise Sheet 3, Exercise 1 - up to scaling by r.

Example 2.3.9 (Anti-de Sitter spacetime). Let us consider for some r > 0 the pseudohyperbolic space $\operatorname{Sign}\left(H^{n,n}(x)\right) = -1$

$$\mathbb{H}^{n,1}(r) \coloneqq \left\{ x \in \mathbb{R}^{n,2} \mid \langle \langle x, x \rangle \rangle_{n,2} = -r^2 \right\}.$$

The space $\mathbb{H}^{n,1}(r)$ is diffeomorphic to $\mathbb{R}^n \times \mathbb{S}^1$, see Exercise Sheet 1, Exercise 2, thus it is never simply connected. Its universal covering $\widetilde{\mathbb{H}}^{n,1}(r)$, which is diffeomorphic to $\mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1}$ is called **anti-de** Sitter spacetime. This example is treated in Exercise Sheet 3, Exercise 1 - up to scaling by r.

Physical Interpretation 2.3.10. The Minkowski space $\mathbb{R}^{n,1}$, de Sitter spacetime $\mathbb{S}^{n,1}$ and anti-de Sitter spacetime $\widetilde{\mathbb{H}}^{n,1}(r)$ are vaccum solutions of the Einstein equations for vanishing, positive and negative cosmological constant.

Note the normal bundle also carries a natural connection, namely for $X \in \mathscr{X}(M)$ and $V \in \Gamma(NM)$ we define

$$\overline{\nabla}^{\mathbb{I}}_{X}V \coloneqq \pi^{\mathrm{N}}(\overline{\nabla}_{X}V).$$

Summer term 2021

We then define

$$(\nabla_{Z}\vec{\Pi})(X,Y) = \overline{\nabla}_{Z}^{\mathbb{I}}(\vec{\Pi}(X,Y)) - \vec{\Pi}(\nabla_{Z}X,Y) - \vec{\Pi}(X,\nabla_{Z}Y).$$

TI: TPM x TpM -> NpM

XIY, ZEX(M) F [TM/M]

Theorem 2.3.11 (Codazzi). For vector fields $X, Y, Z \in \mathscr{X}(M)$ on a semi-Riemannian submanifold in a semi-Riemannian manifold $(\overline{M}, \overline{q})$ we have:

$$\pi^{\mathrm{N}}(\overline{R}(X,Y)Z) = (\nabla_X \vec{\mathrm{II}})(Y,Z) - (\nabla_Y \vec{\mathrm{II}})(X,Z).$$

Proof: By definiton of \overline{R} we have:

$$\pi^{N}(\overline{R}(X,Y)Z) = \pi^{N}(\overline{\nabla}_{X}\overline{\nabla}_{Y}Z - \overline{\nabla}_{Y}\overline{\nabla}_{X}Z - \overline{\nabla}_{[X,Y]}Z)$$

culate for each summand:

We calculate for each summand:

$$\begin{aligned} \pi^{\mathrm{N}}\left(\overline{\nabla}_{X}\overline{\nabla}_{Y}Z\right) &= \pi^{\mathrm{N}}\left(\overline{\nabla}_{X}\left(\nabla_{Y}Z + \vec{\mathrm{II}}(Y,Z)\right)\right) \\ &= \vec{\mathrm{II}}\left(X, \nabla_{Y}Z\right) + \overline{\nabla}_{X}^{\mathbb{I}}\left(\vec{\mathrm{II}}(Y,Z)\right) \\ &= \left(\nabla_{X}\vec{\mathrm{II}}\right)(Y,Z) + \vec{\mathrm{II}}\left(X, \nabla_{Y}Z\right) + \vec{\mathrm{II}}\left(\nabla_{X}Y,\overline{Z}\right) + \vec{\mathrm{II}}(Y, \nabla_{X}Z), \end{aligned}$$

and obviously the same holds when X and Y are permuted.

$$\pi^{\mathrm{N}}\left(\overline{\nabla}_{[X,Y]}Z\right) = \vec{\mathrm{II}}([X,Y],Z) = \vec{\mathrm{II}}(\nabla_{X}Y,Z) - \vec{\mathrm{II}}(\nabla_{Y}X,Z)$$

We collect together and obtain

$$\pi^{\mathrm{N}}\left(\overline{R}(X,Y)Z\right) = (\nabla_{X}\vec{\Pi})(Y,Z) - (\nabla_{Y}\vec{\Pi})(X,Z)$$

as claimed.

 $\overline{\nabla_{y}} = \overline{\nabla_{y}} + \overline{T}(Y, Z)$

Page 72

2.4 Homotheties

Definition 2.4.1. Two semi-Riemannian metrics g and \tilde{g} on a manifold M are homothetic, if there is a constant t > 0 such that $\tilde{g} = t^2 g$.

Lemma 2.4.2. We assume the above notation, and we indicate by a tilde (or no tilde) whether the following geometric objects are defined with respect to \tilde{g} or with respect to g. Then for $X, Y, Z, W \mathscr{X}(M)$ we have

$$\begin{split} \widetilde{\nabla}_{X}Y &= \nabla_{X}Y \\ \widetilde{R}(X,Y)Z &= R(X,Y)Z \\ \widetilde{G}(\widetilde{R}(X,Y)Z) &= t^{2}g(\underline{R}(X,Y)Z) \\ \widetilde{g}(\widetilde{R}(X,Y)Z) &= t^{2}g(\underline{R}(X,Y)Z) \\ \widetilde{sec}(E) &= t^{-2}sec(E) \\ \widetilde{sec}(E) &= t^{-2}sec(E) \\ \widetilde{rie}(X) &= rie(X) \\ \widetilde{Ric}(X) &= t^{-2}\operatorname{Ric}(X) \\ \widetilde{RIC}(\mathbb{R}X) &= t^{-2}\operatorname{RIC}(\mathbb{R}X) \\ \widetilde{scal} &= t^{-2}scal \end{split}$$

Proof: Consider the properties defining the Levi-Civita connection. They do not depend on the semi-Riemann metric, except Product Rule II. By passing from the metric g to \tilde{g} both sides of Product Rule II are changed by a factor t^2 , thus the product rule II for \tilde{g} is also equivalent to the one for g. Thus the uniqueness statement in Theorem 2.1.2 implies $\tilde{\nabla}_X Y = \nabla_X Y$.

The other transformation formulas now follow with elementary calculations.

Summer term 2021

2.5 Warped products

For smooth manifolds B and F we will consider their product manifold $M = B \times F$. Sometimes B will be considered as the basis of M and $\{x\} \times F, x \in B$ as its fibers. The projection to B resp. to F will be denoted by π^B resp. π^F . We assume that B carries a semi-Riemannian metric \check{q} with associated Levi-Civita connection $\check{\nabla}$ and curvatures \check{R} , sěc, ric, scal,.... On F we do not consider one single metric, but a smooth family $\hat{g}^b \in \Gamma(T^*F \odot T^*F)$ is semi-Riemannian manifolds, depending smoothly on $b \in B$. metri

Definition 2.5.1. On $T_{(b,f)}(B \times F) = T_b B \oplus T_f F$ we define the inner product $g_{(b,f)}^{\text{gwp}} \coloneqq \check{g}_b \oplus \hat{g}_f^b$, i.e., for $X_1, X_2 \in \mathcal{T}_b B$ and $Y_1, Y_2 \in \mathcal{T}_f F$ we define

$$g_{(b,f)}^{\text{gwp}}((X_1,Y_1),(X,Y_2)) \coloneqq \check{g}_b(X_1,X_2) + \hat{g}_f^b(Y_1,Y_2).$$

This defines a semi-Riemannian metric g_{gwp} on $M = B \times F$. Metrics generalized war p $\left(\begin{array}{c} \mathcal{B} \\ \mathcal{B} \\$ of this form will be called generalized warped product metrics.

Alternatively we could say

$$g_{(b,f)}^{\mathrm{gwp}} = \left(\pi^B\right)^* \check{g} + \hat{g}$$

where $\hat{g} \in \Gamma(T^*M \odot T^*M)$ is defined by $\hat{g}_{(b,f)} = 0 + \hat{g}_f^b$. Note that we can view \hat{g} as a function $B \to \Gamma(T^*F \odot T^*F)$ and the smooth dependense on b allows to define $\partial_X \hat{g} \in \Gamma(T^*F \odot T^*F)$ for any $X \in TB$.

Mrot diffeo (lultSh-1 $\begin{array}{c} (E_{1}x) & \longrightarrow & (e_{1}H_{1} \xrightarrow{x}) \\ (e^{-\eta}s)_{1}f_{0}e^{\eta}s_{1}y) & (s_{1}y) \end{array}$ $l: (a, b) \longrightarrow (l_0, l_1) \text{ diffeom}$ $\varphi^* g_{rot} = -ds^2 + (f_0 l_1) l_s^2 g^{s^{n-1}}$ warped product $B = (l_{0}, l_{1}), \quad \overline{F} = S^{h-1}$ $\tilde{g} = -ds^{2}, \quad \tilde{g}^{b} = (f_{0}e^{-1})(b)^{2}g^{h-1}$ end 6=5