Differential Geometry II

Lorentzian Geometry

Lecture Notes

©: Alain Riazuelo, IAP/UPMC/CNRS, license CC-BY-SA 3.0

Prof. Dr. Bernd Ammann

Summer term 2021

University of Regensburg

Presentation Version

Version of May 3, 2021

Recapitulation before the lecture on 03.05.:

Additions at the end of Section 2.1: Note that for functions $f \in$ $\mathcal{C}^{\infty}(M)$ we have according to Definition 2.1.14
\# $=b^{-1} \quad x \stackrel{b}{\mapsto} g(x, \sigma) \nabla f=\partial f=\mathrm{d} f \in \Gamma\left(\mathrm{~T}^{*} M\right)$.
We can derivate once again according to Definition 2.1.14 and get $\nabla^{2} f:=\nabla(\nabla f)$, and we obtain

$$
\begin{aligned}
&\left(\nabla^{2} f\right)(X, Y)=(\nabla(\mathrm{d} f))(X, Y)=\left(\nabla_{X}(\mathrm{~d} f)\right)(Y) \\
&=\partial_{X}(\mathrm{~d} f(Y))-\mathrm{d} f\left(\nabla_{X} Y\right)=\partial_{X} \partial_{Y} f-\partial_{\nabla_{X} Y} f \\
& \nabla: \Gamma\left(T^{0,1} \Lambda 1 \rightarrow \Gamma\left(T^{0_{+}} \mathrm{M}\right)\right.
\end{aligned}
$$

The tensor $\nabla^{2} f \in \Gamma\left(\mathrm{~T}^{0,2} M\right)$ is called the Hessian of f, and we also write it as Hess f. The fact that ∇ is torsionfree is equivalent to $\left(\nabla^{2} f\right)(X, Y)=\left(\nabla^{2} f\right)(Y, X)$ for all $X, Y \in \mathscr{X}(M)$.

$$
(\nabla g)=0
$$

Remarks.

(a) For a vector field $X \in \mathscr{X}(M)$ and a function $f \in \mathcal{C}^{\infty}(M)$, we can show $\nabla_{X} \operatorname{grad} f=\left(\nabla_{X}(\mathrm{~d} f)\right)^{\#}$. In order to show this, we check for $Y, Z \in \mathscr{X}(M)$

$$
\begin{aligned}
\left(\nabla_{X} Y\right)^{b}(Z) & =g\left(\nabla_{X} Y, Z\right)=\partial_{X}(g(Y, Z))-g\left(Y, \nabla_{X} Z\right) \\
& =\partial_{X}\left(Y^{b}(Z)\right)-Y^{b}\left(\nabla_{X} Z\right)=\left(\nabla_{X}\left(Y^{b}\right)\right)(Z),
\end{aligned}
$$

which proves $\left(\nabla_{X} Y\right)^{b}=\nabla_{X}\left(Y^{b}\right)$ and which we apply to $Y=$ $\operatorname{grad} f$ to get the statement.
(b) We have $\left(\nabla^{2} f\right)(X, Y)=g\left(\nabla_{X}(\operatorname{grad} f), Y\right)$. In order to show this we calculate

$$
\begin{aligned}
\left(\nabla^{2} f\right)(X, Y) & =\left(\nabla_{X} \mathrm{~d} f\right)(Y)=\left(\nabla_{X}(\operatorname{grad} f)^{b}\right)(Y) \\
& \left.=\left(\nabla_{X} \operatorname{grad} f\right)^{b}(Y)\right)=g\left(\nabla_{X} \operatorname{grad} f, Y\right)
\end{aligned}
$$

$=0 \quad$ (torsinubee ! !)

$M \subset \bar{M}$ is a subinfd of such a φ exists.

The Laplacian Δf is defined as

$$
\left.\Delta f\right|_{x}:=-\sum_{i=1}^{\operatorname{dim} M} \epsilon_{i}\left(\nabla^{2} f\right)\left(e_{i}, e_{i}\right),
$$

where $\left(e_{1}, \ldots, e_{\operatorname{dim} M}\right)$ is a generalized orthonormal basis of $\left(\mathrm{T}_{x} M, g_{x}\right)$. The linear map $\mathcal{C}^{k+2}(M) \rightarrow \mathcal{C}^{k}(M), f \mapsto \Delta f$ for some $k \in \mathbb{N}_{0} \cup \infty$ is called the Laplace operator or the Laplace-Beltrami operator of (M, g).
Attention: Sign of Δ
Last lecture: We studied submanifolds $\iota: M \hookrightarrow \bar{M}$. Here \bar{M} carries a semi-Riemannian metric \bar{g}, and M is such that $\iota^{*} \bar{g}$ is a semiRiemannian metric on M.

$$
\operatorname{dim} \pi
$$

\qquad

$$
\begin{array}{r}
n=\frac{\bar{n}}{\dot{u}}-1 \\
\underset{\operatorname{din} \pi}{ } \quad
\end{array}
$$

2.3 Semi-Riemannian hypersurfaces

We now specialize to the case that M is hypersurfaces in \bar{M}, i.e., $\operatorname{dim} M=\operatorname{dim} \bar{M}-1$. Again M is called a semi-Riemannian hypersurface if $g:=\bar{g}_{\mathrm{T} M \otimes \mathrm{~T} M}=\iota^{*} \bar{g}$ is non-degenerate. In this case the normal bundle $\mathrm{N} M \rightarrow M$ has rank 1. If M is connected this implies that $\left.\bar{g}\right|_{\mathrm{N} M \otimes \mathrm{~N} M}$ is either positive definite (then we say the hypersurface has $\operatorname{sign} \operatorname{sgn}(M):=+1$, or it is negative definite (then the sign is $\operatorname{sgn}(M)=-1$.

Example 2.3.1. Assume t is a regular value of the smooth function. $f: \bar{M} \rightarrow \mathbb{R}$. Then $M:=f^{-1}(t)$ is a submanifold, in fact a hypersurface, and $\mathrm{T}_{p} M=\operatorname{ker} \mathrm{d}_{p} f=\left(\left.\operatorname{grad} f\right|_{p}\right)^{\perp}$ for $p \in M$. If $\mathrm{T}_{p} M$ is a non-degenerate subspace, we can take a generalized orthonormal basis of $\mathrm{T}_{p} M$ and complete it to a generalized orthonormal basis of $\mathrm{T}_{p} \bar{M}$ by joining $\left.\sqrt{\left|\left\langle\left.\left.\operatorname{grad} f\right|_{p} \operatorname{grad} f\right|_{p}\right\rangle\right|}{ }^{-1} \operatorname{grad} f\right|_{p}$. Thus if $\mathrm{T}_{p} M$ is non-
degenerate, $\operatorname{grad} f$ is nonzero and non-lightlike. Conversely if $\mathbb{T} \mathbb{M} I$ is non-zero and non-lightlike, then $\mathrm{T}_{p} M=\left(\left.\operatorname{grad} f\right|_{p}\right)^{\perp}$ is non-degenerate. Thus if M is given as $f^{-1}(t)$ for a regular value t, then M is a semiRiemannian hypersurface if and only if grad f is nowhere lightlike and this holds if and only if $\mathrm{d} f$ is nowhere lightlike.

Definition 2.3.2. A unit normal field of a semi-Riemannian submanifold M in a semi-Riemannian manifold (\bar{M}, \bar{g}) is a section $\nu \epsilon$

hypersisfone

 $\Gamma(\mathrm{N} M)$ with $\bar{g}(\nu, \nu) \in\{-1,+1\}$.We say M is co-orientable if a unit normal field exists, and the choice of such a unit normal field is called a co-orientation.

$$
f^{-1}(t)
$$

Example 2.3.3. The hypersurface in the preceding example is coorientable.
A unit normal field is given by $\nu:=\left.\sqrt{\left|\left\langle\left.\operatorname{grad} f\right|_{p},\left.\operatorname{grad} f\right|_{p}\right\rangle\right|}{ }^{-1} \operatorname{grad} f\right|_{p}$.
Definition 2.3.4. Assume that ν is a unit normal field on the hypersurface $M \subset \bar{M}$. Then we define for $X \in \mathscr{X}(M)$ the shape operator $S(X):=-\bar{\nabla}_{X} \nu$.

$$
\pm 1
$$

We calulate $0=\partial_{X}(\bar{g}(\nu, \nu))=2 g\left(\bar{\nabla}_{X} \nu, \nu\right)=-2 g(S(X), \nu)$, and thus $S(X) \in \mathscr{X}(M)$. The map $X \mapsto S(X)$ is $\mathcal{C}^{\infty}(M)$-linear and thus given by a tensor $S \in \Gamma\left(\mathrm{~T}^{*} M \otimes \mathrm{~T} M\right)=\Gamma(\operatorname{End}(\mathrm{T} M))$.

Lemma 2.3.5. For all $X, Y \in \mathscr{X}(M)$ we have

$$
g(S(X), Y)=\bar{g}(\vec{\Pi}(X, Y), \nu)
$$

Proof:

$$
\begin{aligned}
0 & =\partial_{X} \overbrace{\bar{g}(\nu, Y)}^{\equiv 0}=\bar{g}\left(\bar{\nabla}_{X} \nu, Y\right)+\bar{g}\left(\nu, \bar{\nabla}_{X} Y\right) \\
& =-\bar{g}(S(X), Y)+\bar{g}(\nu, \vec{\Pi}(X, Y)) .
\end{aligned}
$$

Because of the lemma, it is convenient to define the (scalar-valued) second fundamental form as $\Pi(X, Y)=\bar{g}(\vec{\Pi}(X, Y), \nu)$. Note that this implies the sign $\vec{\Pi}(X, Y)=\operatorname{sgn}(M) \Pi(X, Y) \nu$.
Minkousk

Example 2.3.6 (Hyperbolic space). Let again $\langle\bullet \cdot \bullet\rangle$ be the Lorentzian standard scalar product of $\mathbb{R}^{m, 1}$. Let \Perp denote orthogonality with resect to $\langle\bullet \bullet \cdot \bullet\rangle$, e. g., x^{\Perp} or V^{\Perp} is the orthogonal space for $\langle\bullet \bullet \cdot \bullet\rangle$. We define

$$
\left.H^{m}=f^{-1}(-1) \cap\left\{x^{0}>0\right\} \quad f=\frac{1}{2}\langle x, \gamma\rangle\right\rangle
$$

$$
H^{m}:=\left\{x=\left(x^{0}, x^{1}, \ldots, x^{m}\right)^{\top} \in \mathbb{R}^{m, 1} \mid\langle\langle x, x\rangle\rangle=-1 \text { and } x^{0}>0\right\} .
$$

A unit normal field is given by the identity $x \mapsto \nu(x)=x$, as we have $\left\langle\langle x, x\rangle=-1\right.$ and $\mathrm{T}_{\mathscr{\ell}} H^{m}=x^{\Perp} . \quad$ (More on Exercise sheet 3). This is a model for hyperbolic space.

$$
\operatorname{grad} f=x
$$

Theorem 2.3.7 (Gauß formula for hypersurfaces). Let $M \subset \bar{M}$ be a semi-Riemannian hypersurface with unit normal field $\nu, \epsilon:=\langle\nu, \nu\rangle \epsilon$ $\{-1,+1\}$ its sign.
(i) For $X, Y, Z \in \mathrm{~T}_{p} M$ we have

$$
\pi^{\top}(\bar{R}(x, y) z)
$$

(ii) For any $E=\operatorname{span}\{X, Y\} \in G_{2}(M, g)$ we have

$$
\begin{aligned}
\sec (E) & =\overline{\sec }(E)+\varepsilon \frac{\langle S(X), X\rangle\langle S(Y), Y\rangle-\langle S(X), Y\rangle^{2}}{\langle X, X\rangle\langle Y, Y\rangle-\langle X, Y\rangle^{2}} \\
& =\overline{\sec }(E)+\left.\epsilon \operatorname{det} S\right|_{E}
\end{aligned}
$$

$\sec (E)=g(R(x, \pi) y, x)$
$\overline{\text { Page } 70}\langle\overline{\langle x}, x\rangle<Y, Y\rangle-\left\langle X(Y\rangle^{2}\right.$ Lorentzian Geometry

Example 2.3.8 (De Sitter spacetime). An important example of a Lorentzian manifold is de Sitter spacetime which is the pseudosphere defined for some $r>0$ as

$$
\mathbb{S}^{n, 1}(r):=\left\{x \in \mathbb{R}^{n+1,1} \mid\left\langle\langle x, x\rangle=r^{2}\right\} .\right.
$$

$$
\begin{gathered}
\operatorname{sign}\left(S^{n / 1}(v)\right) \\
=+1
\end{gathered}
$$

The de Sitter space $\mathbb{S}^{n, 1}(r)$ is diffeomorphic to $\mathbb{S}^{n} \times \mathbb{R}$, see Exercise Sheet 1, Exercise 2, thus for $n \geq 2$ it is simply connected. This example is treated in Exercise Sheet 3, Exercise 1 - up to scaling by r.

Example 2.3.9 (Anti-de Sitter spacetime). Let us consider for some $r>0$ the pseudohyperbolic space

$$
\mathbb{H}^{n, 1}(r):=\left\{x \in \mathbb{R}^{n, 2} \mid\langle x, x\rangle_{n, 2}=-r^{2}\right\} .
$$

The space $\mathbb{H}^{n, 1}(r)$ is diffeomorphic to $\mathbb{R}^{n} \times \mathbb{S}^{1}$, see Exercise Sheet 1 , Exercise 2, thus it is never simply connected. Its universal covering $\widetilde{\mathbb{H}}^{n, 1}(r)$, which is diffeomorphic to $\mathbb{R}^{n} \times \mathbb{R}=\mathbb{R}^{n+1}$ is called anti-de Sitter spacetime. This example is treated in Exercise Sheet 3, Exexcise 1 - up to scaling by r.

Physical Interpretation 2.3.10. The Minkowski space $\mathbb{R}^{n, 1}$, de Sitter spacetime $\mathbb{S}^{n, 1}$ and anti-de Sitter spacetime $\widetilde{\mathbb{H}}^{n, 1}(r)$ are vaccum solutions of the Einstein equations for vanishing, positive and negative cosmological constant.

Note the normal bundle also carries a natural connection, namely for $X \in \mathscr{X}(M)$ and $V \in \Gamma(\mathrm{~N} M)$ we define

$$
\bar{\nabla}_{X}^{\Perp} V:=\pi^{\mathrm{N}}\left(\bar{\nabla}_{X} V\right) .
$$

Summer term 2021

We then define

$$
\vec{\pi}_{I_{p}} T_{p} M \times T_{p} M \rightarrow N_{p} M
$$

$$
\left(\nabla_{Z} \vec{\Pi}\right)(X, Y)=: \underbrace{\nabla_{Z}^{\Perp}(\vec{\Pi}(X, Y))-\vec{\Pi}\left(\nabla_{Z} X, Y\right)-\vec{\Pi}\left(X, \nabla_{Z} Y\right) .}_{\in \Pi(N M)}
$$

Theorem 2.3.11 (Codazzi). For vector fields $X, Y, Z \in \mathscr{X}(M)$ on a semi-Riemannian submanifold in a semi-Riemannian manifold (\bar{M}, \bar{g}) we have:

$$
\pi^{\mathrm{N}}(\bar{R}(X, Y) Z)=\left(\nabla_{X} \overrightarrow{\mathrm{I}}\right)(Y, Z)-\left(\nabla_{Y} \overrightarrow{\mathrm{I}}\right)(X, Z)
$$

Proof: By definition of \bar{R} we have: $\quad X_{Y}, z, z \in X(M) \in \Gamma\left(T M_{M}\right)$

$$
\pi^{\mathrm{N}}(\bar{R}(X, Y) Z)=\pi^{\mathrm{N}}(\bar{\nabla}_{X} \underbrace{\bar{\nabla}_{Y} Z}-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z) .
$$

We calculate for each summand:

$$
\epsilon \Gamma\left(T \bar{M}_{M M}\right)
$$

$$
\begin{aligned}
\pi^{\mathrm{N}}\left(\bar{\nabla}_{X} \bar{\nabla}_{Y} Z\right) & =\pi^{\mathrm{N}}\left(\bar{\nabla}_{X}\left(\nabla_{Y} Z+\vec{\Pi}(Y, Z)\right)\right) \\
& =\vec{\Pi}\left(X, \nabla_{Y} Z\right)+\vec{\nabla}_{X}^{\Perp}(\vec{\Pi}(Y, Z)) \\
& =\left(\nabla_{X} \vec{\Pi}\right)(Y, Z)+\vec{\Pi}\left(X, \nabla_{Y} Z\right)+\vec{\Pi}\left(\nabla_{X} Y, Z\right)+\vec{\Pi}\left(Y, \nabla_{X} Z\right),
\end{aligned}
$$

and obviously the same holds when X and Y are permuted.

$$
\pi^{\mathrm{N}}\left(\bar{\nabla}_{[X, Y]} Z\right)=\vec{\Pi}([X, Y], Z)=\vec{\Pi}\left(\nabla_{X} Y, Z\right)-\vec{\Pi}\left(\nabla_{Y} X, Z\right)
$$

We collect together and obtain

$$
\pi^{\mathrm{N}}(\bar{R}(X, Y) Z)=\left(\nabla_{X} \vec{\Pi}\right)(Y, Z)-\left(\nabla_{Y} \vec{\Pi}\right)(X, Z)
$$

as claimed.

$$
\bar{\nabla}_{y} z=\nabla_{y} z+\overline{\mathbb{I}}(y, z)
$$

2.4 Homotheties

Definition 2.4.1. Two semi-Riemannian metrics g and \tilde{g} on a manifold M are homothetic, if there is a constant $t>0$ such that $\tilde{g}=t^{2} g$.

Lemma 2.4.2. We assume the above notation, and we indicate by a tilde (or no tilde) whether the following geometric objects are defined with respect to \tilde{g} or with respect to g. Then for $X, Y, Z, W \mathscr{X}(M)$ we have

$$
\begin{aligned}
& \widetilde{\nabla}_{X} Y=\nabla_{X} Y \\
& \hat{\sigma}(\hat{R}(x, y) z, w) \\
& \begin{aligned}
\widetilde{R}(X, Y) Z & =R(X, Y) Z \\
\widetilde{g}(\widetilde{R}(X, Y) Z) & \left.=t^{2} g(B, Y) Z\right) \quad g(R(X, Y) Z, W)
\end{aligned} \\
& \widetilde{\sec }(E)=t^{-2} \sec (E) \\
& \widetilde{\operatorname{ric}}(x, y) \quad \widetilde{\operatorname{rie}}(X)=\widetilde{\operatorname{ric}}(X) \quad \operatorname{ric}(X, y) \\
& \widetilde{\operatorname{Ric}}(X)=t^{-2} \operatorname{Ric}(X) \\
& \widetilde{\operatorname{RIC}}(\mathbb{R} X)=t^{-2} \operatorname{RIC}(\mathbb{R} X) \\
& \widetilde{\text { scan }}=t^{-2} \text { scan }
\end{aligned}
$$

Proof: Consider the properties defining the Levi-Civita connection. They do not depend on the semi-Riemann metric, except Product Rule II. By passing from the metric g to \tilde{g} both sides of Product Rule II are changed by a factor t^{2}, thus the product rule II for \tilde{g} is also equivalent to the one for g. Thus the uniqueness statement in Theorem 2.1.2 implies $\widetilde{\nabla}_{X} Y=\nabla_{X} Y$.

The other transformation formulas now follow with elementary calculations.

2.5 Warped products

For smooth manifolds B and F we will consider their product manifold $M=B \times F$. Sometimes B will be considered as the basis of M and $\{x\} \times F, x \in B$ as its fibers. The projection to B resp. to F will be denoted by π^{B} resp. π^{F}. We assume that B carries a semi-Riemannian metric \check{g} with associated Levi-Civita connection $\check{\nabla}$ and curvatures \check{R}, sec, tic, scala,.... On F we do not consider one single metric, but a smooth family $\hat{g}^{b} \in \Gamma\left(\mathrm{~T}^{*} F \odot \mathrm{~T}^{*} F\right)$ is semi-Riemannian manifolds, depending smoothly on $b \in B$.

Definition 2.5.1. On $\mathrm{T}_{(b, f)}(B \times F)=\mathrm{T}_{b} B \oplus \mathrm{~T}_{f} F$ we define the inner product $g_{(b, f)}^{\mathrm{gwp}}:=\check{g}_{b} \oplus \hat{g}_{f}^{b}$, ie., for $X_{1}, X_{2} \in \mathrm{~T}_{b} B$ and $Y_{1}, Y_{2} \in \mathrm{~T}_{f} F$ we define

$$
g_{(b, f)}^{\mathrm{gwp}}\left(\left(X_{1}, Y_{1}\right),\left(X, Y_{2}\right)\right):=\check{g}_{b}\left(X_{1}, X_{2}\right)+\hat{g}_{f}^{b}\left(Y_{1}, Y_{2}\right) .
$$

This defines a semi-Riemannian metric g_{gwp} on $M=B \times F$. Metrics of this form will be called generalized warped product metrics.

Alternatively we could say

Symmetric

$$
g_{(b, f)}^{\mathrm{gwp}}=\left(\pi^{B}\right)^{*} \check{g}+\hat{g}
$$

where $\hat{g} \in \Gamma\left(\mathrm{~T}^{*} M \odot \mathrm{~T}^{*} M\right)$ is defined by $\hat{g}_{(b, f)}=0+\hat{g}_{f}^{b}$. Note that we can view \hat{g} as a function $B \rightarrow \Gamma\left(\mathrm{~T}^{*} F \odot \mathrm{~T}^{*} F\right)$ and the smooth dependence on b allows to define $\partial_{X} \hat{g} \in \Gamma\left(\mathrm{~T}^{*} F \odot \mathrm{~T}^{*} F\right)$ for any $X \in \mathrm{~T} B$.

\qquad
Eraple 2.5.8 (Hyper)-Suffrees of Revolution

$$
\begin{aligned}
& c(t)=(t, f(t)) \\
& l(t):=\int_{t_{0}}^{i} \sqrt{1 \pm f^{\prime}(\tau)^{2}} d \tau \\
& = \begin{cases}2\left(c_{\left.\mid c t_{0} t\right]}\right) & t \geq t_{0} \\
-L\left(c_{\left[t_{1}, t_{0}\right]}\right) & t<t_{0}\end{cases}
\end{aligned}
$$

$$
\left.M_{\text {rot }}:=\left\{(t, x) \in(a, b) \times \mathbb{R}^{n}\right) f(t)=\|\times\|\right\} \mathbb{R}^{n, 1}
$$

grot induced Rrem.metric \mathbb{R}^{n+1}

$$
\begin{aligned}
& M_{\text {rot }} \leftarrow_{\text {differs }}\left(l_{u}, l_{1}\right) \times S^{n-1} \\
& (t, x) \longrightarrow\left(e\left(H, \frac{x}{n+11}\right)\right. \\
& \left.\left(l^{-1} / s\right), f \circ \ell^{-1} / s\right) \underset{y}{l}(s, y) \\
& \ell:(a, b) \rightarrow\left(l_{0}, l_{1}\right) \text { diffeom. } \\
& \varphi^{x} g_{\text {rot }}=-d s^{2}+\left(f \circ l^{-1}\right)(s)^{2} g^{\delta^{n-1}} \\
& \text { warped product } \\
& B=\left(l_{0}, l_{1}\right), F=S^{n-1} \\
& \hat{g}=-d s^{2} \quad \hat{g}^{b}=\left(f \circ l^{-1}\right)(b)^{2} g^{s^{n-1}} \\
& \text { end. } \\
& b=5
\end{aligned}
$$

