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2.2  Second fundamental form and the Gauf3 formula

Recapitulation before the lecture on 03.05.:

Additions at the end of Sec10n 2.1: Note that for functions f €
C> (M) We have according to Definition 2.1.14 Semn - e ennr.

7}7(”"( @Q ) VS =0f = df D(T°M).

bt xS gl
We can derivate once again according to Definition 2.1.14 and get
V2f:=V(V[), and we obtain

(VHXY) = (v(AH))(XY) = (Vx(df)) ()

£ Ox(df(Y)) = df(VxY) = OxOv f - Oy v f
Tl MT %
The tensor V2f € I'(T%2M) is called the Hessian of f, and we also

write it as Hess f. The fact that V is torsionfree is equivalent to

(V2H(X,Y) =(V2f)(Y,X) for all X,Y e Z°(M). L
7 9)=0
Remarks. g

(a) For a vector field X € 2 (M) and a function f e C>(M), we can
show Vxgrad f = (Vx(df))”. In order to show this, we check
for Y, Z € 2 (M)

(VxY)'(Z2) = g(VxY.Z) = 0x(g(Y,Z2)) - 9(Y,VxZ)

Ix(Y*(2)-Y'(VxZ) = (vx(Y")(2),

which proves (VxY)" = Vx(Y?) and which we apply to ¥ =
grad f to get the statement.

(b) We have (V2f)(X,Y) =g(Vx(grad f),Y). In order to show this

we calculate

(V*)(X.Y)

(Vxdf)(Y) = (VX(gl"adf)b)(Y)
(Vxgrad f)'(Y)) = g(Vxgradf,Y)

Summer term 2021 Page 67



@@J(kﬂc = N
(0°0] (¢ ] = 99 o

@@(k% @@ y ,D

=0 (Covscnree \Z/

A"
ot -G
— A
m

cp((/tql‘l) (R ?UK) v
ﬂcﬁ ‘s a suhadd ol cud. a a p ¢ scofs.




2 SEMI-RIEMANNIAN MANIFOLDS AND THEIR SUBMANIFOLD

o R0 (9,,0,) = Lk

O x EK)

The Laplacian Af is defined as

dim M
Af’x = - Z Ei(v2f)(€i,€i),
i=1
where (eq, ..., eqmar) is a generalized orthonormal basis of (T, M, g,).

The linear map C*2(M) — C*(M), f — Af for some k € Nyu oo is
called the Laplace operator or the Laplace-Beltrami operator of
(M, g).

Attention: Sign of A

Last lecture: We studied submanifolds ¢ : M < M. Here M cai-
ries a semi-Riemannian metric g, and M is such that L*};(is a semi-

Riemannian metric on M. w% M
\(

h="n - 1

2.3 Semi-Riemannian hypersurfaces —
~

We now specialize to the case that M is hypersurfaces in M, i.e.,
dim M = dimM - 1. Again M is called a semi-Riemannian hy-
persurface if g := gyperis = L7 18 non—degeherate. In this case the
normal bundle NM — M has rank 1. If M is connected this implies
that g|naenas is cither positive definite (then we say the hypersur-
face has sign sgn(M) := +1, or it is negative definite (then the sign is
sgn(M) = -1).

Example 2.3.1. Assume ¢ is a regular value of the smooth func-
tion. f: M — R. Then M := f-1(t) is a submanifold, in fact a
hypersurface, and T,M = kerd, [ = (grad f ’p)L forpe M. It T,M
is a non-degenerate subspace, we can take a generalized orthonormal

basis of T, M and complete it to a generalized orthonormal basis of
_ -1
T,M by joining \/|(grad f|p, grad f‘p)\ grad f|p. Thus if T, M is non-
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2.3 Semi-Riemannian hypersurfaces

gred £

degenerate, grad f is non-zero and non-lightlike. Conversely if T/ is
non-zero and non-lightlike, then T, M = (grad f |p)l is non-degenerate.
Thus if M is given as f~1(t) for a regular value ¢, then M is a semi-
Riemannian hypersurface if and only if grad f is nowhere lightlike and
this holds if and only if df is nowhere lightlike.

Definition 2.3.2. A unit normal field of a semi-Riemannian sb-
manifotd M in a semi-Riemannian manifold (M,g) is a section v €
C(NM) with g(v,v) € {-1,+1}.

We say M is co-orientable if a unit normal field exists, and the
choice of such a unit normal field ZS{] caqll?cle)a co-orientation.
Example 2.3.3. The hypersurfac\e\zfin the preceding example is co-
orientable.

A unit normal field is given by v := \/ |(grad f

amad ) grad f|

Definition 2.3.4. Assume that v is a unit normal field on the hyper-

surface M c M. Then we define for X € 2" (M) the shape operator
S(X) = —vxl/. -+ 4

NN
We calulate 0 = 8X@(V,V)5: 29(Vxv,v) = -2¢(S(X),v), and thus
S(X)e Z(M). The map X » S(X) is C*(M)-linear and thus given
by a tensor S e I'(T*M @ TM) = T'(End(TM)).

Lemma 2.3.5. For all X,Y € 2 (M) we have

g(S(X),Y) :g(f[(X,Y),y)

Proof:
=0

/—-'Aﬁ L .
Oxg(,Y)=9(Vxv,Y)+g(v,VxY)

~5(S(X),Y) +g(1, (X, Y)).

-}
Il
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2 SEMI-RIEMANNIAN MANIFOLDS AND THEIR SUBMANIFOLDS

Because of the lemma, it is convenient to define the (scalar-valued)
second fundamental form as II(X,Y) = g(II(X,Y),v). Note that
this implies the sign I(X,Y) = sgn(M)I(X,Y ).

1. [(cﬂugk

Example 2.3.6 (Hyperbolic space). Let again ( «, « )) be the Lorentzian
standard scalar product of R™!. Let 1L denote orthogonality with re-
spect to (+, ¢ ), e.g., x* or V'L is the orthogonal space for (e, s ). We

define M= ‘P’A[-«)n §x°>oq) L= % Lk 52

7= (o= (22", ... a™) e R™ | (2,2) = -1 and 2 > 0}.

A unit normal field is given by the identity = — v(x) = x, as we have
{(z,z) = -1 and TpH™ = z*. (More on Exercise sheet 3). This is a

model for hyperbolic space. 0\ M <‘D = x

Theorem 2.3.7 (GauB formula for hypersurfaces). Let M ¢ M be a

semi-Riemannian hypersurface with unit normal field v, € = (v,v) €

{-1,+1} its sign. T =
(i) For X,Y,Z € T,M we have ﬂ\ ((R (’X(’YJ %)

R(X,Y)Z ((S(V), 2)S(X) ~(S(X). 2)S(Y)). M

(ii) For any E =span{X,Y} € Go(M, g) we have

(S(X), X)(S(Y),Y)- £S(X),Y)?
(X, XY Y)-(X,Y)?
= 8ec(F) + edet S|E

sec(E)

sec(F) +¢

) 2
page i LY > = CRCT
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2.3 Semi-Riemannian hypersurfaces

Example 2.3.8 (De Sitter spacetime). An important example of a
Lorentzian manifold is de Sitter spacetime which is the pseudo-

sphere defined for some r > 0 as %%VL { g "y ((V / /
SM(r) = {z e RV | (2,2 =12} = ¢

The de Sitter space S™!(r) is diffeomorphic to S* x R, see Exercise
Sheet 1, Exercise 2, thus for n > 2 it is simply connected. This example

is treated in Exercise Sheet 3, Exercise 1 — up to scaling by r.

Example 2.3.9 (Anti-de Sitter spacetime). Let us consider for some

r > 0 the pseudohyperbolic space

11
s [ «//
HL(r) = {2 e R | (2,2} =12} .
The space H™!(r) is diffeomorphic to R” x S, see Exercise Sheet 1, 4
Exercise 2, thus it is never simply connected. Its universal covering
Hn1(r), which is diffeomorphic to R® x R = R™! is called anti-de
Sitter spacetime. This example is treated in Exercise Sheet 3, Ex-

ercise 1 — up to scaling by r.

Physical Interpretation 2.3.10. The Minkowski space R™1, de Sit-
ter spacetime S™' and anti-de Sitter spacetime H™(r) are vaccum
solutions of the Finstein equations for vanishing, positive and negative

cosmological constant.

Note the normal bundle also carries a natural connection, namely
for X e Z' (M) and V e '(NM) we define

ViV =NV xV).
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2 SEMI-RIEMANNIAN MANIFOLDS AND THEIR SUBMANIFOLDS

T Tl e Tof = N, 1

We then define —| g

(V2D (X, Y) = T7(IX,Y)) - (92X, V) - (X, 92Y).

Enn M)
Theorem 2.3.11 (Codazzi). For vector fields X,Y,Z ¢ Z (M) on a

semi- Riemannian submanifold in a semi-Riemannian manifold (M,q)

we have:
™ (R(X,Y)Z) = (vxI)(Y,Z) - (vyI)(X, Z).
Proof: By defintion of R we have: XLLT( te %@\7/ « F ( T/V IH J
™ (R(X,Y)Z) = o (VxVvZ-VwVxZ-Vxy)Z).

We calculate for each summand:

N (VX(VyZ +I0(Y, Z)))
I(X,vvZ)+Vx(I(Y,2))
(VxI)(Y, 2) + T (X, Vy Z) + (V¥ Z) + L(Y, Vx Z),

N (VxVyZ2)

and obviously the same holds when X and Y are permuted.

—

N (TpenZ) = H([X,Y],2) = ﬁwwﬁ(vﬁw

We collect together and obtain
N (R(X,Y)Z) = (vxI)(Y,Z) - (VvyI)(X, Z)

as claimed. u
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2.5 Warped products

2.4 Homotheties

Definition 2.4.1. Two semi-Riemannian metrics g and g on a man-
ifold M are homothetic, if there is a constant t >0 such that § = t3q.

Lemma 2.4.2. We assume the above notation, and we indicate by a

tilde (or no tilde) whether the following geometric objects are defined

with respect to § or with respect to g. Then for XY, Z, WG%(M) we /
have

VxY = vxY
A~ R(X,Y)Z = R(X,Y)Z
> (RUHW srcess - eopern o (Rlxu)2 W/
sec(EB) = t%sec(E)
Se (s ) -y ric(ly)
Ric(X) = t?Ric(X)
RIC(RX) = t2RIC(RX)

scal = tZscal

Proof: Consider the properties defining the Levi-Civita connection.
They do not depend on the semi-Riemann metric, except Product
Rule II. By passing from the metric ¢ to g both sides of Product
Rule II are changed by a factor ¢?, thus the product rule II for g is
also equivalent to the one for g. Thus the uniqueness statement in
Theorem 2.1.2 implies VxY = VY.

The other transformation formulas now follow with elementary cal-

culations. m
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2 SEMI-RIEMANNIAN MANIFOLDS AND THEIR SUBMANIFOLDS

2.5 Warped products

For smooth manifolds B and I’ we will consider their product manifold
M = B x F. Sometimes B will be considered as the basis of M and
{z} x F', v € B as its fibers. The projection to B resp. to F' will be
denoted by 78 resp. 7f". We assume that B carries a semi-Riemannian

metric ¢ with associated Levi-Civita connection V and curvatures R,

séc, Tic, scval,. ... On F we do not consider one single metric, but
a smooth family §* € I'(T*F © T*F) is semi-Riemannian mamifolds,
depending smoothly on b€ B. W : ¢

Definition 2.5.1. On T, p\(Bx F') = TyB @ T F we define the inner
product g(gzv;)) = gy @ gf;, i.e., for X1,Xy € TyB and Y1,Ys € T¢F we
define

9o (X1, 1), (XY2)) = (X1, Xo) + (Y1, Ya).

This defines a semi-Riemannian metric gewp, on M = B x F'. Metrics

of this form will be called generalized warped product metrics.

(%\&)K\/ N . .
7 D =
014 ¢ ' (TNETH
A
Alternatively we could say SYM«[MM/ [/\4 \C
gwWp  _ (WB)*§+§

Iv.1) =

where g € I'(T*M ©T*M) is defined by g, 5) = O+§§’c. Note that we can
view § as a function B - I'(T*F @ T*F") and the smooth dependense
on b allows to define Oxg§ e I'(T*F © T*F) for any X € TB.
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