B Related vector fields

Definition B.1. Let M and N be smooth manifolds, and $f: M \to N$ a smooth map. A vector $\overline{X} \in \mathscr{X}(N)$ is called f-related to $X \in \mathscr{X}(M)$ if $df \circ X = \overline{X} \circ f$, *i. e.*, if the diagram

commutes.

Lemma B.2. Let M and N be smooth manifolds, and $f : M \to N$ a smooth map. If $\overline{X} \in \mathscr{X}(N)$ is f-related to $X \in \mathscr{X}(M)$ and if $\overline{Y} \in \mathscr{X}(N)$ is f-related to $Y \in \mathscr{X}(M)$, then $[\overline{X}, \overline{Y}]$ is f-related to [X, Y].

Proof: For any $\varphi \in \mathcal{C}^{\infty}(N)$ we have

$$\partial_{\mathrm{d}f(X)}\varphi = \mathrm{d}\varphi(\mathrm{d}f(X)) = \mathrm{d}(\varphi \circ f)(X) = \partial_X(\varphi \circ f).$$

Thus we have $\partial_{\overline{X}}(\varphi \circ f) = \partial_{\overline{X} \circ f}\varphi = (\partial_{\overline{X}}\varphi) \circ f$ and similarly $\partial_{Y}(\varphi \circ f) = (\partial_{\overline{Y}}\varphi) \circ f$ for all $\varphi \in \mathcal{C}^{\infty}(N)$. We now calculate

$$\partial_{df([X,Y])} \varphi = \partial_{[X,Y]} (\varphi \circ f)$$

$$\partial_{A} (\varphi \circ f) = \partial_{X} (\partial_{Y} (\varphi \circ f)) - \partial_{Y} (\partial_{X} (\varphi \circ f))$$

$$= \partial_{X} ((\partial_{\overline{Y}} \varphi) \circ f) - \partial_{Y} \partial_{Y} \partial_{Y} ((\partial_{\overline{X}} \varphi) \circ f)$$

$$= (\partial_{\overline{X}} (\partial_{\overline{Y}} \varphi)) \circ f - (\partial_{\overline{Y}} (\partial_{\overline{X}} \varphi)) \circ f$$

$$= (\partial_{[\overline{X},\overline{Y}]} \varphi) \circ f.$$

$$= \chi (\xi)$$

As derivations are in bijection to vector fields, this implies $df([X, Y]) = [\overline{X}, \overline{Y}] \circ f$, which is the statement of the lemma.