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Wiederholung zu Beginn der Vorlesung am 26.04.:

(V, g) vector space with non-degenerate symmetric form, oriented

Hodge star isomorphism:

∗∶�k
V ∗ �→�n−k

V ∗

g(–, —)vol = — ∧ (∗–) ∀–, — ∈ �k
V ∗.

Set (V, g) ∶= R3,1

• electrical field �E = (E1, E2, E3)�∶R×R3 �→ R3, (t, x)� �E(t, x).
• magnetic field �B = (B1, B2, B3)�∶R×R3 �→ R3, (t, x)� �B(t, x).
• the (electrical) charge (density) fl∶R ×R3 �→ R.

• the electrical current (density) �j∶R ×R3 �→ R3.

(Fµ‹)µ‹ ∶=
�������

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

�������
, F ∶= �

0≤µ<‹≤3 Fµ‹ dxµ ∧ dx‹.

(1.5.3)

in other words F = �E♭ ∧ dt + ∗( �B♭ ∧ dt) Maxwell equations:

(i) divR
3( �E) = fl. The Gauß law.

(ii) divR
3( �B) = 0. The Gauß law for magnetic fields.

(iii) rot( �E) = −ˆ �B
ˆt

. The Faraday law.

(iv) rot( �B) = �j + ˆ �E
ˆt

. The Ampère–Maxwell law.

Ende der Wiederholung
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We calculate

dF =divR
3 �B ⋅ dx1 ∧ dx2 ∧ dx3

− dx0 ∧ dx1 ∧ dx2 ∧ dx3�����������������������������������������������������������������������������������������������������������������������������������
dvol

��ˆ �B
ˆt
+ rot( �E)�, ● , ● , ● � .

As a consequence F is closed if and only if (ii) and (iii) hold.

∗F = − �B♭ ∧ dt + ∗( �E♭ ∧ dt)
d(∗F ) = (divR

3 �E) ⋅ dx1 ∧ dx2 ∧ dx3

+ dvol��−ˆ �E
ˆt
+ rot( �B)�, ● , ● , ● �

= dvol��(divR
3 �E) ˆ

ˆt
− ˆ �E

ˆt
+ rot( �B)�, ● , ● , ● �

= ∗��(divR
3 �E) ˆ

ˆt
− ˆ �E

ˆt
+ rot( �B)�♭� .

We define J(x, t) ∶= ��fl(x, t)�j(x, t)��, then (i) and (iv) are equivalent to

∗d(∗F ) = J ♭.

Result 1.5.3. We have written the electromagnetic field as F ∈ 2(V ),
for a (3+1)-dimensional Minkowski space. The Maxwell-equations are

then equivalent to

dF = 0, ∗d(∗F ) = J ♭.
Pulling back with any isometry R3,1 → V and using (1.5.3) we obtain

the classical way to write �E and �B. Any rule how the electromagnetic

field changes under change of the inertial system is subsumed into this

picture.

Page 40 Lorentzian Geometry



Because of the Poincaré lemma there is A ∈ 1(R3,1), the 4-vector

potential such that F = dA. This A is unique up to a closed 1-form,

as F = dA = dÃ implies d(A − Ã) = 0, i. e., there is some h ∈ C∞(R3,1)
with A − Ã = dh.

As a next step we want to understand the electromagnetic field as

connection on a bundle, more precisely as a complex vector bundle

of rank 1. In [12, Sec. 1.2.1] you have seen the definition of real vector

bundles, and by replacing real vector spaces by complex vector spaces

(and Rk by Ck) we obtain the definition of a complex vector bundle.

The dimension of the fibers is called the rank of the bundle, thus a

complex vector bundle of rank k yields a real vector of rank 2k if we

forget fiberwise multiplication by i, only keeping multiplicatin by real

numbers. Real or complex cector bundles of rank 1 are called line

bundles.

Definition 1.5.4 (Curvature of a vector bundle). If V → M is a

vector bundle over a manifold M and if ∇ is a connection on V , then

we define the curvature R(V,∇V ) as

R(V,∇V )(X, Y )s = ∇V
X∇V

Y s −∇V
Y∇V

Xs −∇V[X,Y ]s,

where X, Y ∈ (TM) and s ∈ (V ).
One checks that the map

R(V,∇) ∶ (TM) × (TM) × (V ) → (V )
(X, Y, s) � R(V,∇V )(X, Y )s

is a trilinear map of C∞(M)-modules.

This implies that R(V,∇) is given by an element of ��2 T∗M⊗End(V )� =∶
2�M, End(V )�.
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Now let us assume that M is a manifold and A ∈ 1(M).
L ∶=M ×C fi�→M

For p ∈M the fiber over p is fi−1(p) = {p}×C, and we use the standard

structure as 1-dimensional complex vector space on C ≅ {p} ×C. It is

thus a complex vector bundle of rank 1, i. e., a complex line bundle. It

has a global trivialization, an – up to isomorphism of bundle – there

is a unique such bundle (for each rank), there we call L the trivial

complex line bundle over M . A (smooth) section of L is a (smooth)

map M →M ×C that is the identity in the first component.

Thus we may identify sections of L with complex-valued functions.

Now we define a connection ∇A on L. For X ∈ (TM) and sf ∈ (L)
we define �∇A

Xsf� �p ∶= �p, ˆX|p

f + iA�X �p�f�
and one can easily check that this satisfies the required properties of

a connection claimed in [12, Def. 2.2.1]. The connection also satisfies

the product rule

ˆX�sf , sh� = �∇A
Xsf , sh� + �sf ,∇A

Xsh�,
where the fiberwise scalar product is defined by �(p, z), (p, w)� ∶= zw.

Connection on complex vector bundles with fiberwise scalar product

satisfying this product rule are called unitary connections.

We calculate the curvature as

�RA(X, Y )sf��p = �∇A
X∇A

Y sf −∇A
Y∇A

Xsf −∇A[X,Y ]sf��
p

= �p, ˆX|p

�ˆY |p

f + iA(Y �p)f� + iA(X �p)�ˆY |p

f + iA(Y �p�−ˆY |p

�ˆX|p

f + iA(X �p)f� − iA(Y �p)�ˆX|p

f + iA(X �p�
−ˆ[X,Y ]|p

f − iA([X, Y ]�p)f�
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= �p, i�ˆX|p

�A(Y �p)� − (ˆY |p

�A(X �p)� −A([X, Y ]�p)�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
dA(X,Y )

�f

+i2�A(X �p)A(Y �p) −A(Y �p) (A(X �p)��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������=0
�f�.

= idA(X, Y ) sf

Now the trivialization of L used above is not unique, other trivial-

izing maps are given by H ∈ C∞(M,C � {0}):
TH ∶ L =M ×C→M ×C, (p, z)� (p, H(p)z).

In this trivialization the form A has to be adapted, due to the calcu-

lation

TH(∇A
X(TH)−1(sf)) = �p, H(p)ˆX|p

(H( ● )−1f) + iH(p)A�X �p�(H(p)−1f)�
= �p, ˆX|p

f − ˆX �p(H)
H(p) + iA�X �p�f�.

If M is simply-connected, then there is a function h ∈ C∞(M,C) with

H = exp(ih), and we get

ˆX �p(H)
H(p) = iˆX|p

h = i dh(X)�p,
and finally

TH(∇A
X(TH)−1(sf)) = �p, ˆX|p

f + i(A − dh)�X �p�f�.
If the change of trivialization preserves the fiberwise scalar product,

then H ∶M → S1 ⊂ C and then then we may choose h ∈ C∞(M,R).
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What does these bundle theoretic facts provide for electromagnetic

fields?

Let M = R3,1, and F ∈ 2(R3,1) the 2-form describing the elec-

tromagnetic field. Then any 4-potential A ∈ 1(R3,1) with dA = F

yields yields a connection ∇A on the trivial complex line bundle with

RA(X, Y )sf = i F (X, Y )sF .

Result 1.5.5. We can model the electromagnetic field as a unitary

connection on a complex line bundle (with fiberwise scalar product)

over R3,1. Tow magnetic fields are physicaly undistinguishable if and

only if the bundles with connection are isomorphic.

Remark 1.5.6. In our argumentation we used that the de Rham co-

homology groups Hk(R3,1) vanish for k = 1, 2. There are physical

situation, namely in quantum mechanics, where it is reasonable to al-

low more complicated topology for the space, e. g., if we assume the

existence of magnetic monopoles or if we do quantum mechanics on

completements of wires.

What we did above are only the first steps. Further steps are:

• The above form of the Maxwell equations generalizes immedi-

ately to Lorentzian manifolds, i. e., to curved spacetimes.

• It is now easy to view the Maxwell equations as the Euler-

Lagrange equation of an action functional in the perspective of

Lagrangian mechanics.

• The above considerations lead to describing the electromagnetic

field as the curvature of a bundle. This bundle can be enlarged to

a larger bundle which then describes the unification of the elec-

tromagnetic force with the weak force to the electroweak force.

We obtain the “standard model of particle physics”.
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2 Submanifolds of semi-Riemannian

manifolds

2.1 Semi-Riemannian manifolds

In this section we will always assume n = dim M .

Definition 2.1.1. Let M be a (smooth) manifold. A semi-Riemann-

ian metric is a (smooth) (0, 2)-tensor g ∈ (T∗M ⊗ T∗M), such

that for all p ∈ M the associated map gp ∶ TpM × TpM → R is a

non-degenerate symmetric form. We say that g is of signature(m, k) if all gp are of tha signature. A semi-Riemannian man-

ifold (of signature (m, k) is a pair (M, g) consisting of a smooth

manifold M and a semi-Riemannian metric g (of signature (m, k)
on M . An m-dimensional Riemannian manifold/metric is a semi-

Riemannian manifold/metric of signature (m, 0), and an (m + 1)-
dimensional Lorentzian manifold/metric is a semi-Riemannian

manifold/metric of signature (m, 1).
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Theorem 2.1.2. Let (M, g) be a semi-Riemannian manifold. then

there is a unique map ∇ ∶ X(M) ×X(M)→ X(M) with the properties:

For f ∈ C∞(M), X, Y, Z ∈ X(M), – ∈ R we have:

(i) ∇fXY = f∇XY und ∇X+X1
Y = ∇XY +∇X1

Y . (C∞(M)-linear

in the 1st argument)

In other words X � ∇XY is a C∞(M)-modul homomorphismus.

(ii) ∇X(Y +Z) = ∇XY +∇XZ. (additive in the 2. argument)

Together with ∇X(–Y ) = –∇XY we obtain R-linearity in the 2.

argument, i. e., the map Y � ∇XY is an R-linear map.

(iii) ∇X(fY ) = (ˆXf)Y + f∇XY . (Product rule I)

(iv) ∇XY −∇Y X − [X, Y ] = 0 (torsion free)

(v) ˆX �Y, Z� = �∇XY, Z� + �Y,∇XZ�. (Product rule II)

Deriving with respect to the Levi-Civita connection is also called

covariant derivation.

The proof is very similar as in the Riemannian case, so we do not

want to give it in details, see [13, Chap. 3] for a full proof. Let us

mention instead what has to be modified in the proof of Analysis IV,

Kapitel 2, Satz 2.7.2 [4] to get a proof of the above theorem. In the

proof of uniqueness one assumes the existence of two connections ∇
and ∇̃ with the required properties. For any X, Y, Z ∈ (TM) one can

show with identical arguments that

g(∇XY, Z) − g(∇̃XY, Z) = 0. (2.1.1)

The goal is to show that ∇XY = ∇̃XY . In the Riemannian case one

can simply apply (2.1.1) to Z ∶= ∇XY − ∇̃XY , and we get g(Z, Z) = 0

and so Z = 0. This argument is no longer valid, but obviously the

non-degeneracy of g yields the conclusion as well.
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Lemma 2.1.3 (Locality of the Levi-Civita connection). Assume V ⊂○
U ⊂○ M , let ∇M and ∇U be the Levi-Civita connections of (M, g) and(U, g�U). Let X, Y ∈ (TM) and X̃, Ỹ ∈ (TU) with X �V = X̃ �V and

Y �V = Ỹ �V , then �∇M
X Y � �V = �∇U

X̃
Ỹ � �V .

Notation 2.1.4. Let x ∶ U → V , U ⊂M , V ⊂ Rn be a chart of the semi-

Riemannian manifold (M, g) with coordinate vector fields (ˆ1, . . . , ˆn).
We define gij ∶= g(ˆi, ˆj) ∈ C∞(U). We assume that (gij(p))ij is the

matrix inverse to (gij(p))ij, so also gij ∈ C∞(U).
Definition 2.1.5 (Christoffel symbols). Let x ∶ U → V , U ⊂ M , be

a chart of the semi-Riemannian manifold (M, g) and we use Nota-

tion 2.1.4. Then we define the Christoffel symbols k
ij ∶ U → R of(M, g) for the chart x by the formula


k
ijˆk ∶= ∇ˆi

ˆj.

Here we use the convention, that we always sum over summands which

contain an index both as an upper and as a lower index. This is called

the Einstein notation, also called the Einstein summation con-

vention.

The properties in Theorem 2.1.2 imply


k
ij = 1

2
(ˆigjm + ˆjgim − ˆmgij) gkm.

As a consequence we have for X =X iˆi and Y = Y jˆj:

∇XY =X i �(ˆiY
k) + Y j


k
ij�ˆk.

This formula implies that (∇XY ) �p only depends on on X �p, Y �p and

the derivatives of the components of Y , expressed in some coordinates,
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in the direction of X. In particular, if c ∶ (−‘, ‘) → M is a curve with

ċ(0) = X, and if Y is a vector field along the curve c, then ∇XY is

well-defined. This derivative will be denoted by ∇
dt

Y . Let us formalize

this a bit clearer.

Definition 2.1.6. Let N and M be smooth manifolds, and f ∈ C∞(N, M).
Let fiTM ∶ TM → M be the standard footpoint projection. A vector

field along f is a smooth map X ∶ N → TM such that fiTM ○X = f

N M

TM

f

X
fiTM

The space of all vector fields along f will be called (f∗TM).
If x ∶ U → V , U ⊂○ M , V ⊂○ Rn is a chart of M , then every vector field

along x can be written as

X �p =X i(p)ˆi�f(p),
where X i ∶ f−1(U)→ R are smooth.

Now, let us assume that M carries a semi-Riemannian manifold,

and let ∇ be the associated Levi-Civita connection. For X as above

and Y ∈ TN we define

∇Y X = (ˆY X i)ˆi +X i �∇df(Y )ˆi� ○ f. (2.1.2)
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Examples 2.1.7.

(1) In the case N =M , f = idM this is just the Levi-Civita connection

defined before.

(2) In the case that f is constant, say f ≡ p ∈ M , this is just the

usual derivative ∇Y X = ˆY X of X ∶ N → TpM .

(3) If N is a submanifold of M , and f = ÿ ∶ N � M the inclusion,

this defines a connection on the bundle

TM �N ∶= ÿ∗TM = ●�
p∈N TpM

viewed as a vector bundle over N .

(4) If I is an interval and “ ∶ I → M a smooth curve. Then “̇(t) =(d�dt)“(t) is a vector field along “. Thus “̇ ∈ (“∗TM).
Every Y ∈ (“∗TM) can be derived with respect to t, using ∇.

For this derivative we write

∇
dt

Y ∶= ∇ ˆ
ˆt

Y.

In particular, we have defined the second derivative

∇
dt

“̇(t)
of a curve “.

Definition 2.1.8. Let (M, g) be a semi-Riemannian manifold. A

curve “ ∶ I →M is a geodesic, if, and only if for all t ∈ I:

∇
dt

“̇(t) = 0.

One easily checks that “ is a geodesic if and only if for any co-
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ordinate system x ∶ U → V , we have – using Notation 2.1.4 and

x ○ “ = (“1, . . . , “n)�: for all t ∈ “−1(U) we have

“̈k(t) = −ij
k“̇i(t)“̇j(t).

Lemma 2.1.9. If “ ∶ I → M is a geodesic, then t � g(ċ(t), ċ(t)) is

constant.

Proof:

d

dt
g�“̇(t), “̇(t)� = ˆ“̇(t)g�“̇(t), “̇(t)�

= g�∇“̇(t)“̇(t), “̇(t)� + g�“̇(t),∇“̇(t)“̇(t)�
= 2g�∇

dt
“̇(t), “̇(t)� = 0

For vectors and curves we define the notations of timelike, space-

like, lightlike, nonspacelike and causal as in Definitions 1.2.2 and

1.2.6.

Corollary 2.1.10. For a geodesic “ in a semi-Riemannian manifold

exactly one of the following is true

(1) “ is timelike, i. e., for all t we have g(“̇(t), “̇(t)) < 0;

(2) “ is lightlike, i. e., for all t we have g(“̇(t), “̇(t)) = 0;

(3) “ is spacelike, i. e., for all t we have g(“̇(t), “̇(t)) > 0.

Note that geodesics may be used to define normal coodinates with

similar definitions and properties as in the Riemannian situation.
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Definition 2.1.11. On a semi-Riemannian manifold (M, g) we define

the following curvature tensor.

(a) For vector fields X, Y, Z ∈ (TM) we define the Riemann cur-

vature tensor

R(X, Y )Z ∶= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z ∈ (TM).
One proves as in the Riemannian context that R is a (1, 3)-tensor

(field).

(b) We define the Ricci curvature tensor or the Ricci curvature(0, 2)-tensor ric ∈ (T∗M ⊗T∗M) as

∀p ∈M ∶ ∀X, Y ∈ TpM ∶ ric(X, Y ) ∶= tr �W � R(W, X)Y �.
(c) The Ricci curvature endomorphism Ric ∈ (TM ⊗T∗M) as

the unique tensor such that for all p ∈M and all X, Y ∈ TpM :

g(Ric(X), Y ) = ric(X, Y ).
(d) the scalar curvature

scal ∶= tr Ric ∈ C∞(M).
A map f ∶ M → N manifolds is called a local diffeomorphism if

for every p ∈ M there are U ⊂○ M , V ⊂○ N with p ∈ U and f(p) ∈ V

such that f �U ∶ U → V is a diffeomorphism. If g (resp. ĝ) is a semi-

Riemannian metric on M (resp. N), then we say that this f ∶M → N is

a local isometry from (M, g) to (N, ĝ) if for all p ∈M the differential

dpf ∶ TpM → Tf(p)N is an isometry. Obviously any local isometry is a

local diffeomorphism. If a local isometry f is also a bijective, then f

is called an isometry.
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Lemma 2.1.12. If (M, g) and (N, h) are semi-Riemannian manifolds

and if f ∶ M → N is a local isometry, then for all p ∈ M and all

X, Y, Z, W ∈ TpM :

(a) dpf �R(M,g)(X, Y ), Z� = R(N,h)�dpf(X), dpf(Y )�dpf(Z).
(b) f∗ ric(N,h) = ric(M,g).
(c) ric(N,h)�dpf(X)� = dpf�Ric(M,g)(X)�
(d) scal(M,g) = scal(N,h) ○f .

Proposition 2.1.13 (Symmetries of the curvature tensors). Let (M, g)
be a semi-Riemannian manifold. Then for all p ∈M and all X, Y, Z, W ∈
TpM we have

(1) g(R(X, Y )Z, W ) = −g(R(Y, X)Z, W ) (Anti-symmetry in

first two slots)

(2) g(R(X, Y )Z, W ) = −g(R(X, Y )W, Z) (Anti-symmetry in

last two slots)

(3) g(R(X, Y )Z, W ) = g(R(Z, W )X, Y ) (Interchange

symmetry)

(4) R(X, Y )Z +R(Y, Z)X +R(Z, X)Y = 0 (1st Bianchi identity)

The proposition is a generalization of [12, Prop. 2.4.9], and can be

proved completely analogously.

Note that the last inequality, i. e., the 1st Bianchi identity is also

called the algebraic Bianchi identity. However, it was not found by

Bianchi, but by Ricci. Due to Bianci is the “second Bianchi identity”,

and due to their similarity both come under the name Bianchi identity.
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Definition 2.1.14 (covariant derivation of tensors). There are unique

connections ∇ on

T(r,s)M ∶= TM ⊗�⊗TM�����������������������������������������������������������������������������������
r times

⊗T∗M ⊗�⊗T∗M�������������������������������������������������������������������������������������������������
r times

such that

(1) on C∞(M) = (T(0,0)M) we have ∇ = ˆ,

(2) on (TM) the connection ∇ is the Levi-Civita connection

(3) for –(T∗M) we have

for all X, Y ∈  ∶ (∇X–)(Y ) = ˆX(–(Y )) − –(∇XY ).
(4) for t ∈ (T(r,s)) and t̂ ∈ (T(r̂,ŝ)) we have

∇X(t1 ⊗ t2) = (∇Xt1)⊗ t2) + t1 ⊗∇Xt2)
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Theorem 2.1.15 (2nd Bianchi identity/differential Bianchi identity).

Then for all p ∈M and all X, Y, Z, W ∈ TpM we have

(∇XR)(Y, Z)W + (∇Y R)(Z, X)W + (∇ZR)(X, Y )W = 0.

This identity is called the 2nd Bianchi identity or the differential

Bianchi identity. Proof: It is sufficient to proof the theorem if X,

Y , Z are coordinate vector fields for normal coordinates centered in

p ∈M . We then have

∇XX �p = 0 ∇XY �p = 0 ∇XZ �p = 0

∇Y X �p = 0 ∇Y Y �p = 0 ∇Y Z �p = 0

∇ZX �p = 0 ∇ZY �p = 0 ∇ZZ �p = 0

and thus also all commutators of X, Y , and Z vanish at p.

(∇XR)(Y, Z)W �p = ∇X(R(Y, Z)W )�p −R(∇XY, Z)W �p�����������������������������������������������������������������������������������=0−R(Y,∇XZ)W �p�����������������������������������������������������������������������������������=0
−R(Y, Z)∇XW �p

We obtain at the point p:

(∇XR)(Y, Z) = [∇X , R(Y, Z)] = �∇X , [∇Y ,∇Z]�.
The statement now follows from the Jacobi identity which says that for

linear maps A, B, C ∈ End(V ) of a vector space V one has [A, [B, C]]+[B, [C, A]] + [C, [A, B]] = 0.
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