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1.4 Special relativity: Main ingredients

In special relativity we combine classical objects to relativistic objects,

which are called “4-vectors” by physicists, for example:

classical name classical name relativistic name

scalar vector object

t time �x position x = (t, �x) event

E energy �p momentum p = (E, �p) (energy-)momentum

4-vector

fl electrical �j electrical J = (fl,�j) electrical

charge current 4-current

„ electric �A magnetic A = („, �A) electromagnetic

potential potential potential

As an example we claim that all freely falling objects move along

straight affine lines in R3,1, i. e., along worldlines

R ∋ · ∈ x(·) = x0 + ·v0 ∈ R3,1

where x0 ∈ R3,1 and v0 is causal future-directed, and if the objects has

non-zero rest mass m0 we have the additional requirement that v0 has

to be timelike.

An arbitrary object is decribed by a worldline · � x(·), a curve in

spacetime. One additionally requires that the derivative ẋ(·) of x(·)
is causal future-directed for any · , and in case of non-zero rest mass

it is even requested to be timelike.

Note that if we replace x(·) by a reparametrization y(·) ∶= x(Ï(·)),
then ẏ(·) = Ï̇(·)ẋ(Ï(·)) and thus the conditions above on ẋ(·) do

not depend on the choice of parametrization.
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The length of a causal curve c will be interpreted as the proper

time, and it is interpreted as the time felt by an observer along this

worldline. It is possible to reparametrize a worldline by proper time,

which means that �ċ(·), ċ(·)� ≡ −1. Now one defines the 4-velocity

vc(·) as the derivation of c(·) with respect to proper time, thus in an

arbitrary parametrization we get

vc(·) = ċ(·)�−�ċ(·), ċ(·)�.

The acceleration an observer along the worldline c will feal is the

so-called 4-acceleration

ac(·) ∶= 1�−�ċ(·), ċ(·)�
d

d·
vc(·) = 1�−�ċ(·), ċ(·)�

d

d·

�� ċ(·)�−�ċ(·), ċ(·)�
��

which is the second derivative of c with respect to proper time..

Note that the classical velocity is defined as �vcla

c (·) ∶= �ċ0(·)�−1�̇c(·)
and thus ċ(·) is proportional to

�� 1�vcla

c (·))
��. We obtain

vc(·) = 1�
1 − ��vcla

c (·)�2

�� 1�vcla

c (·)
�� .
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Example 1.4.1 (Twin paradox). Two twin sisters are born on earth,

which we consider as being non-accelerated (which is compared to the

speed of light a reasonable approximation). The twins have the role

of observers. Twin no. 1 will remain on Earth. At the age of 30 years

twin no. 2 is becoming astronaut, and she will travel with 60% the

speed of light in the direction of some other star, but at the age of 40

years she decides to return to the earth, flying again with 60% of the

speed of light, where she arrives at the age of 50 years. What is the

age of her twin sister?

Let x = (t = x0, x1, x2, x3)� be the coordinates measured by twin

no. 1, normalized to t = 0 at the age of 30 years. She will note that –

after her departure – her sister will travel along the worldline

c1 ∶ [0, ·ret]→ R
3,1, · � (·, 0.6 ⋅ ·, 0, 0)· ,

until she will reach her return point for · = ·ret. For 0 ≤ · ≤ ·ret we

calculate ċ1(·) = (1, 0.6, 0, 0)� and thus �ċ1(·), ċ1(·)� = −0.64. Thus

the proper time of the worldline c1 is

L(c1) = � ·ret

0

√
0.64 d· = 0.8·ret

and as this should be 10 years, we have ·ret = 12.5 years. So twin no. 1

will say that her sister reached the return point, when she was 42.5

years old.

A similar calculation will show that the trip back also took 12.5

years – from the point of view of sister no. 1. So twin no. 1 will be 5

years older after the trip than sister no. 2.
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Example 1.4.2 (Lorentz contraction). Let us also discuss in the above

examples the question, what the distance between the sisters will be,

the so-called Lorentz contraction or Lorentz-Fitzgerald contrac-

tion. This distance will also depend on the perspective. From the

point of view of sister no. 1, for 0 ≤ · ≤ ·ret the distance will be 0.6· ,

and for ·ret ≤ · ≤ 2·ret, it will be 0.6 × (2·ret − ·). In particular, the

distance point of the return point is 0.6 × 12.5 = 7.5 light years.

However, while sister no. 2 is moving, she will experience another

distance. For 0 ≤ · ≤ ·ret her coordinates (t̂ = x̂0, x̂1, x̂2, x̂3)� are ob-

tained from her sister’s coordinates by the Lorentz boost

�������

x̂0

x̂1

x̂2

x̂3

�������
=
�������

cosh – sinh – 0 0

sinh – cosh – 0 0

0 0 1 0

0 0 0 1

�������

�������

x0

x1

x2

x3

�������
,

�������

x0

x1

x2

x3

�������
=
�������

cosh(−–) sinh(−–) 0 0

sinh(−–) cosh(−–) 0 0

0 0 1 0

0 0 0 1

�������

�������

x̂0

x̂1

x̂2

x̂3

�������
,

and the factor – is determined by setting x̂1 = 0, x0 = · , x1 = .6· . This

leads to 0 = sinh – + 0.6 cosh –, i. e., tanh – = −0.6.

Sister no. 2 will see the earth moving away from her along the

worldline ‡ � (‡ cosh –, ‡ sinh –, 0, 0)� which after reparametrization

is ‡̂ � (‡̂,−0.6‡̂, 0, 0)�, so she will experience the same relative speed,

but her time passes slower. Thus, to that spacetimes point c1(·) sister

no. 1 measures a distance 0.6· , while sister no. 2 measures a distance

0.8 × 0.6· = .48· . In particular, shortly before she starts the slowing

down process for the return, sister no. 2 will realize a distance of 6 light

years, but during the breaking process the distance, detected by sister

no. 2 will increase to 7.5 light years, again reducing to 6 light years
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when she accelerates in the opposite direction.

Let us also add some comments about the energy of a particle moving

along a worldline · � c(·). Each particle, has a rest mass m0 ≥ 0

which remains constant along the worldline and which is supposed to

take over the classical property that every object has its mass. So

assume m0 > 0. In classical mechanics the (kinetic) energy of the

particle is said to be given by Eclass

kin
= 1

2
m0��vcla

c �2, but physics would

not change if we add a constant E0, potentially depending on the

particle, so we obtain the ansatz

Eclass = E0 +Eclass

kin
= E0 + 1

2
m0��vcla

c �2.

We have to find a relativistic generalization, and it turns out – see [6,

Sec. 1.5] for details – that the relativistic energy E ∶=�1 − ��vcla

c �2
−1

m0

is suitable. Together with the momentum �p ∶= E�vcla

c it forms a 4-vector

p ∶= (E, �p) = 1�
1 − ��vcla

c �2

m0

�� 1�vcla

c

�� =m0vc.

As the proportionality constant between �p and �vcla

c is the (rela-

tivistic) mass, we obtain that the relativistic energy and relativistic

mass coincide. The last displayed equation implies, in particular,�p, p� = −m2
0
, and thus we obtain the famous energy-momentum

relation (recall c = 1).

E2 = ��p�2 +m2
0.
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1.5 Special relativity: Electromagnetism

Definition 1.5.1. Let V be an oriented real vector space, n ∶= dim V ,

with a non-degenerate symmetric form g (i. e., an inner product), and

let (e1, . . . , en) be a positively oriented generalized orthonormal basis

of signature (m, n −m). Then let (e1, . . . , en) be the algebraically dual

basis, which is a basis of V ∗ and satisfies ei = ‘ig(ei, ● ). It is a pos-

itively oriented generalized orthonormal basis for V ∗, which we equip

with the dual inner product having the same signature and sign factors

‘i.

We obtain a natural volume element on V given by

vol = e1 ∧ e2 ∧ . . . ∧ en ∈ n�V ∗.

For k = 0, 1, . . . , n the space �k V ∗ carries an inner product, denoted

again by g such that

eI ∶= �ei1 ∧ ei2 ∧� ∧ eik � 1 ≤ i1 < i2 . . . < ik�����������������������������������������������������������������
I ∶=

≤ n�

is a generalized orthonormal basis of �k V ∗ with g(eI , eJ) = ”IJ‘I,

where ‘i1<i2...<ik
= ‘i1

‘i2
. . . ‘ik

. There is now a well-defined ismorphism

∗∶�k
V ∗ �→�n−k

V ∗

which satisfies

g(–, —)dvol = — ∧ (∗–) ∀–, — ∈ �k
V ∗.
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Examples 1.5.2.

(a) For example let Ic = {j1 < j2 . . . < jn−k} =∶ J be the set of indices

not contained in I, ordered stricly increasing. Then

∗(eI) = ‘‘I eJ ,

where the sign ‘I is defined as above and where the sign ‘ is de-

fined by dvol = ‘eI∧eJ , i. e., ‘ = 1 if and only if (ei1
, . . . , eik

, ej1
, . . . , ejn−k

)
is positively oriented. In particular

∗(1) = dvol, ∗(dvol) = (−1)n−m.

For – ∈ �k V ∗ and X ∈ V we have

∗(∗–) = (−1)(n−k)k+(n−m), ∗(X♭) = dvol(X, ● ,�, ● ).
(b) As a more concrete example, we equip R3,1 with the orienta-

tion, such that (e0, e1, e2, e3) is a positively oriented generalized

orthonormal basis. Then

∗1 = dvol, ∗e0 = −e1 ∧ e2 ∧ e3, ∗e1 = −e0 ∧ e2 ∧ e3,

∗e2 = e0 ∧ e1 ∧ e3, ∗e3 = −e0 ∧ e1 ∧ e2, ∗(e0 ∧ e1) = −e2 ∧ e3

∗(e0 ∧ e2) = e1 ∧ e3, ∗(e0 ∧ e3) = −e1 ∧ e2,

∗(e1 ∧ e2) = e0 ∧ e3, ∗(e1 ∧ e3) = −e0 ∧ e2, ∗(e2 ∧ e3) = e0 ∧ e1,

∗(e0 ∧ e1 ∧ e2) = −e3, ∗(e0 ∧ e1 ∧ e3) = e2, ∗(e0 ∧ e2 ∧ e3) = −e1,

∗(e1 ∧ e2 ∧ e3) = −e0, ∗(dvol) = −1.

We can apply this to forms, then ei turns into dxi.
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dx0 ∧ dx1 � −dx2 ∧ dx3 (1.5.1)

dx‡(0) ∧ dx‡(1) � Á‡ sgn(‡) dx‡(2) ∧ dx‡(3) (1.5.2)

for ‡ ∈ Perm�{0, 1, 2, 3}� and Á‡ =
���������

1 0 ∉ {‡(0), ‡(1))}
−1 0 ∈ {‡(0), ‡(1))} .

We now choose a gauge such that several physical constants (in

physics notation the speed of light c, the electric constant ‘0, the mag-

netic constant µ0) are equal to 1. In experimental physics the Maxwell

equations are determined as follows:

Maxwell equations.

We have

• an electrical field E∶R ×R3 �→ R3, (t, x)� E(t, x).
• a magnetic field B∶R ×R3 �→ R3, (t, x)� B(t, x).
• the (electrical) charge (density) fl∶R ×R3 �→ R.

• the electrical current (density) �j∶R ×R3 �→ R3.

They satisfy:

(i) divR
3

E = fl. The Gauß law.

(ii) divR
3(B) = 0. The Gauß law for magnetic fields.

(iii) rot(E) = −ˆB
ˆt

. The Faraday law.

(iv) rot(B) = �j + ˆE
ˆt

. The Ampère–Maxwell law.
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We write

(Fµ‹)µ‹ ∶=
�������

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

�������
, F ∶= �

0≤µ<‹≤3 Fµ‹ dxµ ∧ dx‹.

(1.5.3)

in other words

F = E♭ ∧ dt + ∗(B♭ ∧ dt)

We calculate

dF =divR
3

B ⋅ dx1 ∧ dx2 ∧ dx3

− dx0 ∧ dx1 ∧ dx2 ∧ dx3�����������������������������������������������������������������������������������������������������������������������������������
dvol

��ˆB

ˆt
+ rot(E)�, ● , ● , ● � .

As a consequence F is closed if and only if (ii) and (iii) hold.

∗F = −B♭ ∧ dt + ∗(E♭ ∧ dt)
d(∗F ) = (divR

3

E) ⋅ dx1 ∧ dx2 ∧ dx3

+ dvol��−ˆE

ˆt
+ rot(B)�, ● , ● , ● �

= dvol��(divR
3

E) ˆ

ˆt
− ˆE

ˆt
+ rot(B)�, ● , ● , ● �

= ∗��(divR
3

E) ˆ

ˆt
− ˆE

ˆt
+ rot(B)�♭� .

We define J(x, t) ∶= ��fl(x, t)�j(x, t)��, then (i) and (iv) are equivalent to

∗d(∗F ) = J ♭.
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Result 1.5.3. We have written the electromagnetic field as F ∈ Ω2(V ),
for a (3+1)-dimensional Minkowski space. The Maxwell-equations are

then equivalent to

dF = 0, ∗d(∗F ) = J ♭.
Pulling back with any isometry R3,1 → V and using (1.5.3) we obtain

the classical way to write E and B. Any rule how the elctromagnetic

field changes under change of the inertial system is subsumed into this

picture.

This way to present the Maxwell equations allows to apply the

Poincaré lemma. Because of the Poincaré lemma there is A ∈ Ω1(R3,1),
the 4-vector potential such that F = dA. This A is unique up to a

closed 1-form, as F = dA = dÃ implies d(A− Ã) = 0, i. e., there is some

f ∈ C∞(R3,1) with A − Ã = df .

What we did above is only the first step. Further steps are:

• The above form for the Maxwell equations generalizes immedi-

ately to Lorentzian manifolds, i. e., to curved spacetimes.

• It is now easy to view the Maxwell equations as the Euler-

Lagrange equation of an action functional in the perspective of

Lagrangian mechanics.

• The above considerations lead to describing the electromagnetic

field as the curvature of a bundle. This bundle can be enlarged to

a larger bundle which then describes the unification of the elec-

tromagnetic force with the weak force to the electroweak force.

By enlarging the bundle further we obtain the “standard model

of particle physics” which combines in an even larger bundle the

electroweak force with the strong force. All this can be done on

curved spacetimes without additional effort.
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