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The group SO↑(m, 1) defined above is called the identity compo-

nent of the Lorentz group. We further define the orthochronous

Lorentz group as

O↑(m, 1) ∶= {A ∈ O(m, 1) � t-or(A) = +1}.
Definition 1.2.6. A curve in a manifold M is a map c∶ I → M ,

t � c(t) where I is an interval. We then say that c is parametrized

on I, and the argument t in c(t) is called the parameter of c. We

write ċ(t) ∈ Tc(t)M for the derivative of c in t. The curve is called Ck,

k ∈ N0 ∪ {∞, Ê} if this holds as a map. Here Ê stand for real-analytic.

We say that a C1-curve c is regular, if for all t ∈ I we have ċ(t) ≠ 0.

A curve c, is called piecewise Ck, if it is continuous, and if there

are finitely many numbers a0 ∶= inf I < a1 < � < a¸ = sup I such that

c�[aj−1,aj]∩I is Ck for all j = 1, . . . , ¸. A piecewise C1 curve c ∶ [a, b]→M

is regular if the decomposition a0 < a1 < � < a¸ can be chosen such that

c�[aj−1,aj]∩I is a regular C1-curve.

If (V, g) is a Minkowski space, then a piecewise C1-curve c ∶ I → V is

called timelike/lightlike/spacelike/nonspacelike, if for every t ∈ I

the vector ċ(t) is timelike/lightlike/spacelike/nonspacelike.

Note that the definition implies that any nonspacelike curve is reg-

ular.

Definition 1.2.7. Let (V, g) be a Minkowski space. Assume that c∶ I →
V is a (piecewise) C1-curve. Then we define its length as

L(c) ∶= � b

a

��g�ċ(t), ċ(t)��dt ∈ [0,∞].
In case that c is a nonspacelike curve, then L(c) is also called the

proper time of the worldline c.
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Remarks 1.2.8.

(a) The length is independent under change of parametrization: if

Ï ∶ J → I is a C1-diffeomorphism, then L(c) = L(c ○Ï).
(b) If dim V ≥ 2, then any two points can be joined by a piecewise

C1-curve of length 0. Thus the infimum lengths cannot be used

to define a metric (in the sense of metric spaces, as we did for

Riemannian manifolds.

1.3 Special relativity: Why the Minkowski space?

The content of this subsection is not of a mathematical nature. In-

stead, we want to provide arguments, inspired by physics, why it is

reasonable to equip spacetime with the structure of a Minkowski space

(as long as there are no curvature effects, i. e., “on a sufficiently small

time and length scale”). More precisely, it has the structure of an

affine Minkowski space with a time orientation, i. e., our spacetime

is an affine space, whose associated vector space carries a metric of

signature (m, 1) with a time-orientation (see Definition 1.3.5).

In special relativity we join time R and our space R3 to a (3 +
1)-dimensional spacetime R × R3. Points in R × R3 will be called

events. They consist of a time x0 ∶= t ∈ R and a (traditional) point�x = (x1, x2, x3)� in R3.

Physical Interpretation 1.3.1. The physical interpretation of x =(t, �x) is that we are at a certain time x0 at a traditional point �x. If

an pointwise object moves in space (or if it remains at same place),

it is alawys given by a curve c ∶ I → R ×R3. If (t, �x) = c(·) for some

· ∈ I, this means that at time t the object will be at the position �x.

The parametrization of the curve has no physical meaning.
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Up to here, we have just reformulated previously existing (Newto-

nian) physics.

Question 1.3.2. What kind of mathematical structure do we have on

spacetime?

Physical Postulate 1.3.3 (Speed of light is constant). The speed of

light in vacuum is constant. It does not depend on the status of motion

of the observer (i.e. his speed and direction), and of the direction or

polarization of the light, provided the observer is non-accelerated and

non-rotating.

(In fact the speed of light in modern gauge is c = 299 792 458 m�s =
1.)

Note: a postulate is something that is claimed (by the physicists)

and that is usually widely accepted in that community. Its logical

role is similar to an axiom in mathematics: it is some assumption

on which one builds a theory. In a physical theory the legitimization

for a postulate may have different origins. They may come from an

experiment, from an analogy to another physically relevant theory,

from the fact that other assumptions would lead to contradictions or

ill-defined objects, or just from esthetical considerations. In the case

of the above postulate, the argument was derived from experiments,

in particular from the Michelsohn-Morley experiment (1881).

A central idea of this experiment was that if you say “light moves

at the speed x meters per seconds” then this always should depend

on the status of motion of the observer. Assuming the postulates of

classical Newtonian physics, one might argue as follows: If observer 1

observes that light moves with speed c1 and if observer 2 moves with

speed v1 and in the same direction as the light, then observer 2 should
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mesasure (relative to him) that light travels with velocity c1 − v1. If

he moves in the opposite direction, then he will measure c1 + v1. One

can refine this argument: in any point �x of space there is at most one

velocity vector �v ∈ R3 such that an unaccelerated observer (observer

3) (moving along �x + t�v) will observe that the speed of light does not

depend on its direction. So, if such an observer 3 exists (at x̂), then in

his measurements the speed of light does not depend on the direction,

but all observers moving with some relative speed to him will measure

that the speed of light depends on the direction. So he is in a very

particular status of motion.

Towards the end of the 19th century physicists were able to measure

quite precisely that in the system of motion described by a laboratory

on the Earth’s surface, the speed of light was nearly independent of the

direction. The error of these measurements got essentially smaller than

the speed of the Earth around the sub (about 30 000m�s). So, we move

(with sufficiently good approximation) in this particular direction. In

view of Newtonian physics there were two solutions

(i) We are in absolute rest

(ii) There is a carrier medium, the “aether” in which light moves as

a wave, similar to a water wave moves in water and sound in air.

This aether moves with the Earth close to our planet’s surface.

Possibility ((i)) seemed to be absurd: it would imply that we are

in absolute rest, the sun, the planets and all other stars are moving

around us following laws which are much more complicated than New-

ton’s law. These would have meant abandonning the achievements of

Copernicus, Galileo Galilei, Keppler, et. al.

So the dominant theory was the aether theory. The aether theory

was also supported by the fact that scientist could not imagine, that

a wave propagates without a carrier medium. The “aether” inter-
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pretation of the Michelsohn-Morley experiment then claimed that the

aether was dragged by the Earth’s surface. However, this was in con-

tradiction to the Fizeau experiment which implied that the dragging

effect of the aether could not be sufficiently strong. Also the dragging

effect should have occured at other planets as well, potentially leading

to optical turbulences which never where observed.

The final solution – given by Einstein’s special relativity (1905) – was

to abandon a postulate which noone questioned before, as it seemed

so “obviously true”.

We present this postulate in a stronger form (absolute time) and a

weaker form (absolute time-order structure).

Abandoned Postulate (Absolute time). There is an absolute time.

More precisely, there is an affine 1-dimensional space T and a map t ∶
S → T from spacetme S to T which can be measured independently from

the observer. (One says t(E) is the time when the event E occured.)

Abandoned Postulate (Absolute time-order structure and simul-

taneity). There is an absolute causal structure on spacetime, including

a notion of simultaneity. More precisely, if two events E1 and E2 occur

somewhere in spacetime it is possible to compare them, i. e., there is

a well-defined answer - independent of the observer – to the question:

did E1 happen earlier, at the same time or later than E2?

Obviously, the absolute time can be used to define an absolute time-

order structure. I assume that still today, most people would not have

any doubts that the Postulate of absolute time is a valid assumption.

However, this postulate had to be given up. Special relativity pre-

dicts that there is no absolute time, and even no absolute time-order

Page 24 Lorentzian Geometry





structure: the temporal order of two events, measured by some ob-

server, may depend on the motion of the observer. E.g. if we measure

on Earth that an explosion in Chicago happened at the same time as

a sun flare on the star Alpha Centauri, then an astronaut in a rocket

moving with 10 percent of the speed of light from Earth towards Alpha

Centauri will measure that the sun flare on Alpha Centauri happened

much earlier, while an atronaut moving with similar speed from Al-

pha Centauri towards us will measure that the explosion in Chicago

was earlier. The new effect is called relativity of simultaneity or –

slightly different – relativity of time.

A further postulate, supported by experiments, was:

Physical Postulate 1.3.4 (Light travels along lines). Any (non-

accelerating, non-rotating) observer will measure that light travels along

straight lines (more precisely: affine lines).

So let us fix to (non-accelerating, non-rotating) observers O1 and

O2. Each observer is also supposed to fix an orthornormal frame of

traditional space, to fix an origin in traditional space (x̂ = 0), to fix

an origin of time t = 0. We also assume that they are able to measure

the times and location for every event (sufficiently close to them) in

our spacetime S. This defines a chart for each observer and finally

leads to the structure of a 4-dimensional manifold. For simplicity we,

ignore these local versus global effects, so we assume that observer Oi

gets a bijective map fi ∶ S → R ×R3 which associates to an event the

time and the coordinates he will measure. We obtain a bijective map

Ï ∶= f2 ○ (f1)−1 ∶ R ×R3 → R ×R3 which we assume – as one does often

in physics – to be smooth, and by inverting the role of O1 and O2, also

the smoothness of Ï−1 seems natural. Together with Postulates 1.3.3

and 1.3.4, we see that Ï is a diffeomorphism that maps lightlike lines
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to lightlike lines. Here a lightlike line is one of the form

{(t0 + t, �x0 + t�x) � t ∈ R}
for some t0 ∈ R, �x0 ∈ R3, and �x ∈ S2. This is a severe mathemati-

cal obstruction, which has important consequences, that we will only

sketch: using Exercise Sheet 2, Exercise 1?? and results about con-

formal groups for Minkowski space [15] (see A.1!!! for details), this

implies that Ï is conformal (in the sense of Minkowski spaces), i. e.,

there is a positive function fl ∶ Rn,1 → R>0 such that

∀p ∈ Rn,1∀x, y ∈ TpR
n,1 ∶ �dpÏ(x), dpÏ(y)� = fl(p)�x, y�.

As the dimension S is larger than 2 = 1 + 1 and as Ï is defined

everywhere in R×R3, this implies that Ï has the form x� cf(x) where

c is a non-zero constants and where f is an element of the Poincaré

group O(3, 1)�R3,1. Assuming that the observer can distinguish past

and future (see below), and determine a length scale by determining

the frequency of the hyperfine structure of some atoms, we even see

Ï ∈ O↑(3, 1) �R3,1.

On the other, if we postulate that observers can be accelerated suf-

ficiently much, we can also argue that any Poincaré transformation

in O↑(3, 1) � R3,1 arises in this way. More precisely, for given t0 ∈ R,�x0, �v ∈ R3 we may ask whether an observer no. 2 might follow the

affine lines Lt0,�x0,�v ∶= {(t0 + t, �x0 + t�v) � t ∈ R},
expressed in coordinates of some fixed observer no. 1. There is no

physical obstruction visible to the existence such an observer no. 2, as

long as ��v� < c = 1, and it seems physically reasonable that No. 2 is

able to change his coordinates of traditional space by any rigid motion

of affine Euclidean space R3. This can be combined – but we will not
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give details here – to argue that any element in O↑(3, 1) �R3,1 arises

as a coordinate transformation from a fixed observer (no. 1) to some

other observer.

Thus the structure of the lightcones is given by physical phenomena,

and a time scale is given by standard gauging techniques. This infor-

mation allows us to recapture the symmetric form � ● , ● � on R ×R3,

and thus our space-times is modeled by the Minkowski space R3,1.

However, the splitting R3,1 = R ⊕R3 has no physical meaning. For

any timelike future vector v there is an observer moving in the direction

of v. This observer will interpret the orthogonal complement v⊥ as the

(traditional) space, and equipped with its Euclidean metric induced

from � ● , ● �.
We have said above, that we expect that an observer should be able

to distinguish past and future. We should spend some more thoughts

on this, as it reflexts a further structure on our spacetime, namely a

time-orientation.

Definition 1.3.5. Let (V, g) be a Minkowski space. A time-orientation

on (V, g) is a choice of a connected component of {x ∈ V � g(x, x) < 0}.
Timelike vectors in this component and lightlike vectors in the closure

of this component are called future-directed while causal vectors in

(the closure of) the other component are called past-directed.

Suppose we have to events E1 = (t1, �x1) and E2 = (t2, �x2) in R3,1. IfE2 − E1 is causal and t2 > t1, then one can show that there is an eventE3 = (t3, �x3) with

• t3 ∈ [t1, t2]
• E3 − E1 is zero or lightlike

• E2 − E3 is zero or lightlike
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This means we can send a light signal from E1 to E3 reflect it there

and send it then to E2. So one can transmit information from E1 toE2. On the other hand it would lead to logical contradictions if we

could send an information to an event which happened earlier. Thus

for x, y ∈ R3,1 with x − y timelike we see that we can send information

from x to y if and only if y − x ∈ I+(0). Thus the two open cones of

time-like vectors can be distinguished by experiments, and this fact

will be independent of the observer.

Physical Postulate 1.3.6 (Time-orientation). Our spacetime car-

ries a time-orientation, detectable by experiments, which allows us to

distinguish past and future.

O↑(m, 1) �Rm,1, where O↑(m, 1) ∶= {A ∈ O(m, 1) � t-or(A) = 1}.
As already mentioned above we expect that all (freely falling, non-

rotating) observers shall experience the same physical laws. We will

express and clarify this as a further postulate.

Physical Postulate 1.3.7 (Symmetry groups of special relativity).

All physical laws of general relativity are invariant under the orthochronous

Poincaré group O↑(m, 1) �Rm,1.

Above it remained open whether we can send information between

events whose difference is spacelike. From our postulates we may de-

duce an answer

Physical Conclusion 1.3.8 (Speed of light is a universal speed limit,

part 1). If E1 and E2 are events in spacetime, with E1−E2 ≠ 0 spacelike,

then it is impossible to send information from E1 to E2 or from E2 toE1. No observer may travel from E1 to E2 or vice versa.
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“Proof”. We identify our spacetime with Rm,1. If E1−E2 ≠ 0 is spacelike,

then we can find A ∈ SO↑(m, 1) such that the time component t2 of

A(E2) = (t2, �x2) is larger than the time component t1 of A(E1) = (t1, �x1).
Suppose we can send information from E2 to E1, then we can also send

information from (t2, �x2) to (t1, �x1). We may determine a Poincaré

transformation P ∈ SO↑(3, 1)�R3,1 such that P ((t2, �x2)) = (t1, �x1) and

P ((t1, �x1) = (2t1 − t2, �x2). Thus we may send information from (t1, �x1)
to (2t1−t2, �x2), but transitivity this allows us to send it from (t2, �x2) to(2t1−t2, �x2). But because of 2t1−t2 < t2 we obtain (2t1−t2, �x2)−(t2, �x2) ∈
I−(0), thus we could transmit information in the past. Any observer is

able to transport information along his worldline, so he cannot travel

between events which are spacelike to each others. 2

The above conclusion still does exclude particles or objects traveling

faster than light, provided that they do not carry information. Such

hypothetical particles, traveling faster than light are called tachyons,

but they never been detected in confirmed experiments. So it is com-

mon consensus to exclude particles traveling faster than light.

1.4 Special relativity: Main ingredients

In the previous section we provided physical arguments why it is rea-

sonable to assume in special relativity that our spacetime is modeled

by a (3+1)-dimensional affine Minkowski with a time-orientation. This

space will often be identified with R3,1 in the sequel, which amount to

taking the perspective of some observer, in other words the choice of

an inertial system. We discussed that this choice is unique up to

the action of the orthochronous Poincaré group O↑(3, 1) �R3,1.

One now has to adapt the physical laws that we know from classical

physics to the context of special relativity. One important claim is

that for speeds essentially below the speed of light classical mechanics
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is a good approximation for general relativity, a statement which could

be made precise as a limit. This will lead to equations of motions and

many other physical laws. Unfortunately, we will not be able to give a

full derivation of these laws, as this would – as a first step – require a

detailed study of classical mechanics, classical field theory and many

more.

Instead we will state some laws and draw some conclusions.

In special relativity we combine classical objects to relativistic ob-

jects, which are called “4-vectors” by physicists, for example:

classical name classical name relativistic name

scalar vector object

t time �x position x = (t, �x) event

E energy �p momentum p = (E, �p) (energy-)momentum

4-vector

fl electrical �j electrical J = (fl,�j) electrical

charge current 4-current

„ electric �A magnetic („, �A) electromagnetic

potential potential potential

As an example we claim that all freely falling objects move along

straight affine lines in R3,1, i. e., along worldlines

R ∋ · ∈ x(·) = x0 + ·v0 ∈ R3,1

where x0 ∈ R3,1 and v0 is causal future-directed, and if the objects has

non-zero rest mass m0 we have the additional requirement that v0 has

to be timelike.

More generally, an arbitrary object is decribed by a worldline · �
x(·), a curve in spacetime, and two worldline will be considered iden-

tical if the arise from each other by a reparametrization. In the follow-
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