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Chapter 1

Newtonian mechanics

1.1 Newton’s law

In classical mechanics, the motion of a particle in a force field is governed by
Newton’s law

F = ma.

Here r(t) ∈ R3 is the position of the particle at time t, v = ṙ = dr
dt

is its velocity

and a = r̈ = dv
dt

its acceleration, m is the particle’s mass, and F = F(t, r, ṙ)
is the force acting upon the particle. Since Newton’s equations are of second
order, the motion of the particle is determined uniquely by its initial position
and velocity.

Of particular importance are conservative forces which can be written as a
gradient F = −∇V for a potential V = V (t, r). If F is conservative with time-
independent potential V the total energy

E :=
1

2
m‖v‖2 + V (r)

is conserved:
dE

dt
= mṙ · r̈ + ∇V (r) · ṙ = 0.

The term T := 1
2m‖v‖2 is called kinetic energy, and V (r) potential energy.

Basic forces

The basic forces we encounter in classical mechanics are:

Gravitation. The gravitational force exerted by a particle of mass m2 at position
r2 upon a particle of mass m1 at position r1 equals

Fgrav = −γm1m2
r1 − r2

‖r1 − r2‖3
,

7



8 CHAPTER 1. NEWTONIAN MECHANICS

where γ = 6.67 × 10−11 m3

kg×s2 is the gravitational constant. This is called New-
ton’s law of gravitation. The gravitational force is conservative with potential

Vgrav = − γm1m2

‖r1 − r2‖
.

Electricity. The electric force exerted by a particle of charge e2 at position r2

upon a particle of charge e1 at position r1 equals

Fel =
e1e2
4πε0

r1 − r2

‖r1 − r2‖3
,

where ε0 = 107

4πc2
C2

kg·m = 8.85 × 10−12 C2×s2

kg2×m3 is the vacuum dielectric constant

(in charge units C = Coulomb, c ≈ 3 · 108m
s

velocity of light). This is called
Coulomb’s law. The electric force is conservative with potential

Vel =
e1e2

4πε0‖r1 − r2‖
.

Magnetism. The magnetic force exerted by a particle of charge e2 and velocity
v2 at position r2 upon a particle of charge e1 and velocity v1 at position r1

equals

Fmag =
µ0e1e2

4π

v1 ×
(

v2 × (r1 − r2)
)

‖r1 − r2‖3
,

where µ0 = 4π · 10−7 kg·m
C2 = 1.26 × 10−6 kg×m

C2 is the vacuum magnetic per-
meability. The magnetic force is not conservative. It is usually written as the
Lorentz force

Fmag = e1v1 × B(r1),

where the magnetic induction B is given by the Biot-Savart law

B(r1) =
µ0e2
4π

v2 × (r1 − r2).

B is also not conservative, but since div (a× r) = 0 for every constant vector a,
div B = 0. So on any simply connected region

B = curlA

for a vector potential A.

Problem 1.1. With which velocity must a rocket take off from the surface of the
earth to escape the earth’s gravitational field if no further acceleration takes
place after take-off? (earth radius = 6700 km).

Systems of particles

Newton’s law generalizes immediately to a system ofN particles: Fi = mir̈i, i =
1, . . . , N , where the force Fi upon the ith particle may depend on the positions
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and velocities of all the particles. With r = (r1, . . . , rN ), F = (F1, . . . ,FN ) and
M = diag(m1, . . . ,mN ) this can be written as

F = M r̈.

More generally, we call a Newtonian system the equation F = M r̈ with r ∈ Rn

(n = 3N for an N -particle system) and M a positive definite matrix.

1.2 Constraints

Consider a Newtonian system F = M r̈ on Rn. Suppose the motion is subject
to n− k holonomic constraints fk+1(r) = · · · = fn(r) = 0. We assume that the
∇fi are linearly independent at every point satisfying the constraints, so that

Q = {fk+1(r) = · · · = fn(r) = 0}

is a k-dimensional submanifold of Rn. Newton’s equations continue to hold in
the form

M r̈ = F + Fconstr,

where Fconstr is the constraint force that keeps the particles on Q. We assume
that no work is done by the constraint force, i.e. no energy is lost or gained by
keeping the particles on Q. This is expressed by

d’Alembert’s principle: The constraint force is perpendicular to the submanifold
Q.

Problem 1.2. (cf. [1], Section 21). Derive d’Alembert’s principle by introducing
a potential with a sharp minimum along Q and taking the limit as the minimum
becomes sharper and sharper.

D’Alembert’s principle together with the constraints and Newton’s equations
determine the motion as follows: Write

Fconstr =

n
∑

i=k+1

λi∇fi

with the (yet unknown) Lagrange multipliers λi = λi(t, r, ṙ). Taking two time
derivatives of fj(r) = 0 yields 0 = 〈∇fj(r), ṙ〉 and

0 = 〈D2fj · ṙ, ṙ〉 + 〈∇fj , r̈〉

= 〈D2fj · ṙ, ṙ〉 + 〈M−1F,∇fj〉 +

n
∑

i=k+1

λi〈M−1∇fi,∇fj〉.

SinceM is positive definite and the ∇fi linearly independent, the matrix 〈M−1∇fi,∇fj〉
is positive definite. So the equations can be solved uniquely for λk+1, . . . , λn,
and plugging the λi into Newton’s equations determines the motion of the sys-
tem.
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Example 1.1. (centripetal force). Suppose that the motion is constrained to
the sphere Q = {‖r‖ = R}, and there are no external forces. Taking two time
derivatives yields 0 = 〈r, ṙ〉 and 0 = v2 + 〈r, r̈〉, where v = ‖ṙ‖. Since r̈ ⊥ Q,
this determines the centripetal force

Fconstr = mr̈ = −mv
2

R

r

R
.

Problem 1.3. A particle slides down (without friction) a slope and at the bottom
enters a circular looping of radius R. From which height h must the particle
start (with initial velocity zero) so that it stays on track in the looping?

Problem 1.4. Show that for a Newtonian system constrained to a submanifold
Q ⊂ Rn with mass matrix M = m1l the constraint force is given by

Fconstr = m II(ṙ, ṙ) − F⊥,

where II is the second fundamental form of Q ⊂ Rn, and F⊥ is the component
of the external force perpendicular to Q.



Chapter 2

Lagrangian mechanics

2.1 Hamilton’s variational principle and Lagrange’s

equations

D’Alembert’s principle and the method of Lagrange multipliers provide a way
to treat systems with constraints, but a relatively clumsy one because it in-
volves 2n − k unknowns (r, λk+1, . . . , λn). To find a simpler method, let r =
r(q1, . . . , qk) be a parametrization of Q (which always exists at least locally).
Can we reformulate Newton’s equations in terms of the k unknowns (q1, . . . , qk)?

Problem 2.1. Convince yourself that the desired equations are not q̈ = F‖, where
F‖ is the component of F tangent to Q expressed in terms of q.

Euler-Lagrange equations

Consider the following variational problem: Given a smooth Lagrange function

L : R × R
n × R

n → R,

find extremals of

L(r) =

∫ b

a

L(t, r, ṙ)dt

among paths r : [a, b] → Rn with fixed endpoints r(a) = ra, r(b) = rb.

We compute the variation of L in the direction δr : [a, b] → Rn, δr(a) = δr(b) =

11



12 CHAPTER 2. LAGRANGIAN MECHANICS

0:

dL(r) · δr =
d

ds

∣

∣

s=0

∫ b

a

L(t, r + sδr, ṙ + sδ̇r)dt

=

∫ b

a

(∂L

∂r
· δr +

∂L

∂ṙ
· δ̇r

)

dt

=

∫ b

a

(∂L

∂r
− d

dt

∂L

∂ṙ

)

· δ̇r dt. (2.1)

So the variation vanishes in all directions δr if and only if r satisfies the Euler-
Lagrange equations

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0.

Hamilton’s variational principle

Can we find a function L such that Newton’s equations are the Euler-Lagrange
equations for L? That is, we look for L such that ∂L

∂ṙ
= M ṙ and ∂L

∂r
= −∇V .

Obviously the function L = 1
2 〈ṙ,M ṙ〉−V (t, r) does the job. So we have shown:

Newton’s equations are equivalent to the Euler-Lagrange equations for the La-
grange function

L(t, r, ṙ) =
1

2
〈ṙ,M ṙ〉 − V (t, r) = T − V.

Now consider a system constrained to Q = {fk+1 = · · · = fn = 0}. L is extremal
for variations among paths r : [a, b] → Q ⊂ Rn iff the expression (2.1) vanishes
for all variations δr tangent to Q, which is the case if and only if d

dt
∂L
∂ṙ

− ∂L
∂r

is

everywhere orthogonal to Q. But for L = T − V , d
dt
∂L
∂ṙ

− ∂L
∂r

is the constraint
force, so the orthogonality condition is just d’Alembert’s principle! So we have
shown:

Proposition 2.1. (Hamilton’s variational principle). The path r : [a, b] → Q
satisfies Newton’s equations with holonomic constraints Q = {fk+1 = · · · = fn =

0} ⊂ Rn if and only if it is extremal for
∫ b

a
L(t, r, ṙ)dt among variations in Q

with fixed endpoints, where L = T − V is the Lagrangian.

Corollary 2.2. (Lagrange’s equations). In a (local) parametrization r = r(q)
of Q, Newton’s equations are equivalent to Lagrange’s equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0,

where the Lagrangian L = T − V is expressed in terms of (t, q, q̇).

Proof. Variations in Q are unconstrained in the parameters q, so a path is
extremal if and only if it satisfies the Euler-Lagrange equations in the variables
q = (q1, . . . , qk).
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Note that Lagrange’s equations hold in whichever local parametrization we
choose! Corollary 2.2 thus provides a very simple recipee to derive Newton’s
equations for constrained systems: Express the Lagrangian in terms of a con-
venient parametrization and work out Lagrange’s equations. The following ex-
ample illustrates this procedure:

Example 2.3. (spherical pendulum).

Consider a point of mass m at the end of a rigid rod of length l which is fixed
at the other end, so the motion of the mass point is constrained to the sphere
Q = {‖r‖ = l}. The pendulum is subject to a constant gravitational field of
strength g in the negative z-direction.

The Lagrangian for r = (x, y, z) is given by

L =
1

2
m‖ṙ‖2 −mgz.

In spherical coordinates










x = l sinφ cos θ

y = l sinφ sin θ

z = l cosφ











the Lagrangian becomes

L =
1

2
ml2(φ̇2 + sin2 φθ̇2) −mgl cosφ,

and Lagrange’s equations for (φ, θ) are

d

dt
(ml2φ̇) −ml2 sinφ cosφθ̇2 −mgl sinφ = 0

d

dt
(ml2 sin2 φθ̇) = 0.

The second equation implies pθ := ml2 sin2 φθ̇ = const. Inserting this into the
first equation yields

φ̈− p2
θ

m2l4
cosφ

sin3 φ
− g

l
sinφ = 0.

Problem 2.2. (planar pendulum).

The planar pendulum is a spherical pendulum which can only move in a plane,
say the plane θ = 0. Then pθ = 0 and Lagrange’s equation in the angle φ
becomes

φ̈− g

l
sinφ = 0.

Draw the curves of constant energy E = 1
2 φ̇

2 + g
l
cosφ = const on the (φ, φ̇)

cylinder, and discuss the qualitative behaviour of the system (stable/unstable
equilibria, contractible/noncontractible periodic orbits, homoclinic orbits).
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Let us now discuss the motion of the spherical pendulum with pθ 6= 0 (the case
pθ = 0 is the planar pendulum). It will be more convenient to use cylindrical
coordinates











x = ρ cos θ

y = ρ sin θ

z = z











with ρ2 + z2 = l2. Set the mass to m = 1 since it cancels out anyway, and

express the Lagrange function L = T − V in terms of z and θ using ρ̇2 = z2

ρ2
ż2:

V = gz,

T =
1

2
(ρ̇2 + ρ2θ̇2 + ż2)

=
1

2

( l2ż2

l2 − z2
+ (l2 − z2)θ̇2

)

=
1

2

( l2 − z2

l2
p2
z +

p2
θ

l2 − z2

)

,

where

pθ =
∂L

∂θ̇
= (l2 − z2)θ̇ = const,

pz =
∂L

∂ż
=

l2ż

l2 − z2
.

The motion of the z-coordinate is described by the curves in the (z, pz)-plane
of constant total energy

E =
1

2

( l2 − z2

l2
p2
z +

p2
θ

l2 − z2

)

+ gz.

A point (z, pz) is critical for E iff pz = 0 and V ′
eff (z) = 0, where

Veff (z) =
1

2

p2
θ

l2 − z2
+ gz

is the effective potential. From

V ′
eff (z) =

p2
θ

(l2 − z2)2
+ g

we see that V ′
eff (−l) = −∞, V ′

eff (0) = g > 0 and V ′′
eff > 0. So for any pθ there

exists a unique critical point zcrit of Veff in the interval (−l, 0). It corresponds
to a motion of the pendulum on the horizontal circle z ≡ zcrit.

Since E → ∞ as z → ±l or pz → ±∞, all other level curves of E are compact
and therefore circles. The correspond to motions of the pendulum rotating
around the z-axis with the z-coordinate oscillating between two values zmin
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and zmax. Depending on the ratio between the frequencies of the rotation and
the oscillation, the orbits are either closed, or dense in an annulus on the sphere
{‖r‖ = l}.
The quantities pθ and pz are examples of conjugate momenta pi := ∂L

∂qi
to a

varible qi. They have the obvious but important property that if L does not
depend explicitly on qi, then pi is a constant of the motion.

2.2 Lagrangian systems on manifolds

The discussion in the previous section suggests a more general setting for La-
grangian systems. Let Qn be a manifold of dimension n and

L : R × TQ→ R

a smooth Lagrangian. Assign to every path q : [a, b] → Q its action

L(q) :=

∫ b

a

L
(

t, q(t), q̇(t)
)

dt.

By definition, the path q is a solution of the Lagrangian system defined by L
iff it is an extremal of L among variations with fixed endpoints. Equivalently, q
satisfies Lagrange’s equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0

in any local coordinates (q1, . . . , qn).

Geodesics

A natural Lagrangian is one of the form

L(t, q, q̇) =
1

2
‖q̇‖2 − V (t, q),

where ‖ ‖ is the norm corresponding to a Riemannian metric 〈 , 〉 on Q.

An important special case is free motion with L = 1
2‖q̇‖2. Solutions of this

Lagrangian systems are called geodesics of the Riemannian metric.

Problem 2.3. Show that this definition of geodesics coincides with the more cus-

tomary one: geodesics are extremals of the length functional
∫ b

a
‖q̇‖dt. However,

the two concepts differ in the parametrizations of geodesics. How?

Problem 2.4. Let gij = 〈 ∂
∂qi
, ∂
∂qj

〉 be the metric in local coordinates (q1, . . . , qn)

and g−1
ij the inverse matrix. Show that Lagrange’s equations of a natural La-

grangian system are

q̈k +
∑

i,j

Γkij q̇iq̇j +
∑

i

g−1
ik

∂V

∂qi
= 0,
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where Γkij are the Christoffel symbols

Γkij =
1

2

∑

l

g−1
kl

(∂gil
∂qj

+
∂gjl
∂qi

− ∂gij
∂ql

)

.

Problem 2.5. Show that geodesics on a submanifold Qk ⊂ Rn with the induced
metric are, up to parametrization, the curves on Q whose second derivative in
Rn is everywhere perpendicular to Q. Conclude that the geodesics on a round
sphere are the great circles.

Problem 2.6. Consider the ellipsoidQ := {x2

a2 + y2

b2
+ z2

c2
= 1} ⊂ R

3, 0 < a < b < c.
Show that the intersections of Q with the 3 coordinate planes are geodesics.
Describe the geodesics in a neighbourhood of these 3 geodesics. Are there other
closed geodesics?

Conservation of energy

Conservation of energy is a consequence of the change-of-variable formula for
integrals. Consider a change t = t(τ) of the time variable with t(a) = a and
t(b) = b. Denote derivatives with respect to t, τ by q̇ = dq

dt
, q′ = dq

dτ
. By the

change-of-variables formula,

∫ b

a

Ldt =

∫ b

a

L
dt

dτ
dτ =

∫ b

a

L̃ dτ,

where

L̃(t, q, t′, q′) = L(t, q,
q′

t′
)t′

is a Lagrange function on the extended phase space T (R × Q). So the varia-
tional principles for L and L̃ agree, and the Euler-Lagrange equations for L are
equivalent to those for L̃. In particular, the equation for L̃ with respect to the
variable t reads

d

dτ

∂L̃

∂t′
=

d

dτ

(

L+ 〈∂L
∂q̇
,− 1

(t′)2
q′〉t′

)

=
d

dτ

(

L− 〈∂L
∂q̇
, q̇〉

)

=
∂L̃

∂t
=
∂L

∂t
t′,

or
d

dt

(

L− 〈∂L
∂q̇
, q̇〉

)

=
∂L

∂t
.

So if L is time-independent, the energy

E :=
∑

i

∂L

∂qi
q̇i − L(q, q̇)
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is a constant of the motion. (This can also be directly verified from Lagrange’s
equations for L).

For an intrinsic expression of the energy, denote by dfibreL the fibre derivative

dfibre(q,q̇) L · v :=
d

ds

∣

∣

s=0
L(q, q̇ + sv), v ∈ TqQ.

Then
E = dfibre(q,q̇) L · q̇ − L(q, q̇).

For geodesic motion with L = 1
2‖q̇‖2 the energy is E = 1

2‖q̇‖2, so geodesics are
parametrized with constant velocity.

2.3 Minimizing solutions

A solution of a Lagrangian system is called (locally) minimizing if it is a (local)
minimum (not just an extremum) of L among curves with the same endpoints.

Proposition 2.4. Suppose that L is strictly convex in the fibres in the following

sense: For all (t, q) there exists an ε > 0 such that
∑

i,j
∂2L
∂q̇i∂q̇j

vivj ≥ ε‖v‖2 for

all v ∈ TqQ. Then given a solution q : [a, b] → Q of the Lagrangian system,
q[a′,b′] is locally minimizing for any sufficiently small subinterval [a′, b′] ⊂ [a, b].

Problem 2.7. Prove Wirtinger’s inequality

∫ b

a

|df
dt

|2dt ≥ π2

(b − a)2

∫ b

a

|f |2dt

for every f ∈ C1([a, b]) with f(a) = f(b) = 0. Hint: Fourier series.

Proof. For [a, b] sufficiently small we may assume that q([a, b]) is contained in a
chart in Rn. Let ξ : [a, b] → Rn be a variation with ξ(a) = ξ(b) = 0. The second
variation of L in direction ξ equals

d2

ds2
|s=0L(q + sξ) =

∫ b

a

∑

i,j

( ∂2L

∂q̇i∂q̇j
ξ̇iξ̇j + 2

∂2L

∂q̇i∂qj
ξ̇iξj +

∂2L

∂qi∂qj
ξiξj

)

dt

≥
∫ b

a

(ε‖ξ̇‖2 − c‖ξ̇‖ ‖ξ‖ − c‖ξ‖2)dt ≥
∫ b

a

(
ε

2
‖ξ̇‖2 − C‖ξ‖2)dt

≥ (
επ2

2(b− a)2
− C)‖ξ‖2dt > 0

for (b − a) sufficiently small and ξ 6= 0. Here c, C are constants depending on
(q, q̇), and we have used Wirtinger’s inequality in the last line.

Corollary 2.5. For every geodesic q : [a, b] → Q and sufficiently small subin-
terval [a′, b′] ⊂ [a, b], q|[a′,b′] is a local minimum of the length functional.
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Proof. Extremals of L = 1
2‖q̇‖2 are geodesics parametrized with ‖q̇‖ = const.

For an extremal q,

length(q) = (b− a)‖q̇‖,

L(q) =
1

2
(b − a)‖q̇‖2 =

1

2(b− a)
length(q)2.

So L is a monotone function of length on extremals. In particular, q is length
minimizing iff it minimizes L.

Remark. In fact, geodesics are absolute minima of the length functional on small
intervals (see, e.g.,[6]).

Problem 2.8. Let L(q, q̇) := 1
2 (|q̇1|2 − |q̇2|2) on R2. What are the extremals of

L? Are they unique for given endpoints? Are they locally/globally minimizing?

Existence of minimizers

Theorem 2.6. Let L = 1
2‖q̇‖2 − V (t, q) be a natural Lagrangian on a com-

pact manifold Q. Then, given a < b and qa 6= qb in Q, there exists a smooth
minimizer q : [a, b] → Q of L with q(a) = qa and q(b) = qb.

Sketch of proof. I will use without proof some results from linear functional
analysis. By Nash’s Embedding Theorem, Q can be isometrically embedded
into some RN . Let H be the completion of the linear space

{u ∈ C1([a, b],RN ) | u(a) = u(b) = 0}

with respect to the norm

‖u‖2
H :=

∫ b

a

‖u̇‖2dt.

Since on this space the norm ‖ ‖H is equivalent to the Sobolev norm
∫ b

a
(‖u‖2 +

‖u̇‖2)dt, (H, ‖ ‖H) is a Hilbert space.

Let inf L be the infimum of L over all C1-curves q : [a, b] → Q with q(a) = qa
and q(b) = qb. Let qn : [a, b] → Q be a minimizing sequence with L(qn) → inf L.
Write qn = q0 + un with un ∈ H. Since

∫

V (t, qn) is bounded uniformly in
n, it folloew that ‖un‖H is bounded. By the Banach-Alaoglu Theorem there
exists a subsequence, still denoted by (un), which converges weakly to some
u∞ ∈ H. By the Arzela-Ascoli Theorem, we may further assume that un → u∞
uniformly. Let q∞ := q0 + u∞.

By the uniform convergence, the image of q∞ is contained in Q, and q∞(a) = qa,
q∞(b) = qb. Moreover, V (t, q∞) = limV (t, qn).

By the weak convergence, ‖u∞‖H ≤ lim inf ‖un‖H. This implies L(q∞) ≤
lim inf L(qn) = inf L. If the inequality were strict, then a smooth approximation
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of q∞ would yield a contradiction to the definition of inf L. So L(q∞) = inf L.
It follows that q∞ satisfies Lagrange’s equations in the weak sense and therefore
is smooth. Thus q∞ is a minimizing solution.

By the way, the fact that ‖un‖H → ‖u∞‖H implies that the subsequence un
actually converges to u∞ strongly in H.

Corollary 2.7. Any two points in a compact Riemannian manifold are con-
nected by a length-minimizing geodesic.

Problem 2.9. Show that Theorem 2.6 is not true in general for noncompact
Q. Find some hypotheses for noncompact Q under which you can prove the
theorem. Remark: For V = 0 such hypotheses are provided by the Hopf-Rinow
Theorem (see [6]).

Problem 2.10. Modify the proof of Theorem 2.6 to show: If the natural Lagrange
function L on the compact manifold Q is 1-periodic in t, then in every nontrivial
free homotopy class of loops on Q there exists a minimizing solution.

What happens to this proof applied to the trivial free homotopy class of loops?
Find an example where there exist no contractible solutions. Remark: There
always exists a 1-periodic solution, even if Q is simply connected (see [5]; for
V = 0 this is the Lusternik-Fet Theorem). However, in the simply connected
case, this solution will in general not be minimizing, so different arguments are
needed.

2.4 Noether’s Theorem

Noether’s Theorem formalizes the long-observed principle that symmetries of a
Lagrangian system lead to conservation laws.

Theorem 2.8 (Noether’s Theorem). Suppose that a 1-parameter family of dif-
feomorphisms φs : Q → Q, s ∈ (−ε, ε), leaves the Lagrangian L : R × TQ→ R

invariant: L(t, φs∗·) = L(t, ·). Then the quantity

µ(q, q̇) := 〈∂L
∂q̇
,
d

ds

∣

∣

s=0
φs(q)〉

is a constant of the motion.

Notation. Any map φ : Q → Q lifts to a map φ∗ : TQ → TQ, (q, q̇) 7→
(

φ(q), Tqφ · q̇
)

. Note that the quantity µ is intrinsically defined: ∂L
∂q̇

is the fibre

derivative of L, and d
ds

∣

∣

s=0
φs(q) is a vector field on Q.

Proof. From L(t, φs∗·) = L(t, ·) we obtain in local coordinates:

0 =
d

ds

∣

∣

s=0
L

(

t, φs∗(q, q̇)
)

= 〈∂L
∂q
,
d

ds

∣

∣

s=0
φs(q)〉 + 〈∂L

∂q̇
,
d

ds

∣

∣

s=0
Tqφs · q̇〉.
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This identity and Lagrange’s equations yield

dµ

dt
= 〈 d

dt

∂L

∂q̇
,
d

ds

∣

∣

s=0
φs(q)〉 + 〈∂L

∂q̇
,
d

ds

∣

∣

s=0
Tqφs · q̇〉

= 〈 d
dt

∂L

∂q̇
,
d

ds

∣

∣

s=0
φs(q)〉 − 〈∂L

∂q
,
d

ds

∣

∣

s=0
φs(q)〉

= 0.

Example 2.9. (linear momentum).

Suppose that L = 1
2 〈M ṙ, ṙ〉 − V (t, r) on TRn, and V is invariant under trans-

lations in the direction e ∈ Rn. Then the conserved quantity provided by
Noether’s Theorem is

µ = 〈M ṙ, e〉,
the component in direction e of the linear momentum M ṙ.

For example, this applies to a system of N particles in R3 exerting forces upon
each other that depend only on their distances:

L =
1

2

∑

mi‖ṙi‖2 − V (t, r1, . . . , rN ),

where V depends only on t and the ‖ri − rj‖. Then V is invariant under
translations in all directions (e, . . . , e), e ∈ R3, so the total linear momentum

µ =
∑

miṙi

is conserved. It follows that the center of mass

R :=
1

∑

mi

∑

miri

satisfies R̈ = 0, thus R(t) = R0+V0t. So the motion decomposes into the linear
motion of the center of mass and the relative motion which can be described in
center-of-mass coordinates r′i := ri − R in which the center of mass is at rest.

Example 2.10. (angular momentum).

Suppose that L = 1
2m‖ṙ‖2 −V (t, r) on TR3, and V is invariant under rotations

around the axis e ∈ R
3. Then the conserved quantity in Noether’s Theorem is

µ = 〈mṙ, e× r〉 = 〈mr × ṙ, e〉,
the component in direction e of the angular momentum mr × ṙ.

Problem 2.11. Prove: If the Lagrangian L̃ on the extended phase space R ×Q
is invariant under a 1-parameter family of diffeomorphisms φ̃s : R×Q→ R×Q,
and µ̃ is the corresponding conserved quantity, then

µ(q, q̇) = µ̃(t, q, 1, q̇)

is a conserved quantity of the Lagrangian system for L on Q.

Show that conservation of energy is a special case of this.



Chapter 3

Hamiltonian mechanics

Hamilton’s variational principle implies that Lagrange’s equations are invariant
under arbitrary coordinate transformations q 7→ Q: If the Lagrange function is
expressed in the old and new coordinates as L(t, q, q̇) = L̃(t, Q, Q̇), then

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 ⇐⇒ d

dt

∂L̃

∂Q̇
− ∂L

∂Q
= 0.

Given the usefulness of coordinate changes in mechanics, one may ask whether
the equations of mechanics are invariant under more general transformations
that involve coordinates as well as velocities. That this is indeed the case be-
comes apparent in the Hamiltonian formulation of mechanics.

3.1 The Legendre transform

Definition. Let V be a finite dimensional vector space. The Legendre transform
of a convex function f : V → R is Lf : V ∗ → R,

Lf(p) := max
x∈V

[

〈p, x〉 − f(x)
]

.

Since f is convex, the function p 7→ 〈p, x〉 − f(x) attains its unique maximum
at the point x where p = df(x), thus

Lf(p) = 〈p, x〉 − f(x)
∣

∣

∣

p=df(x)
.

Proposition 3.1. The Legendre transform Lf of a convex function f is again
convex, and L(Lf) = f .

Proof. In one dimension this can be seen geometrically from Figure ???. In

21
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general, set g := Lf . Convexity of g follows from

g
(

(1 − t)p0 + tp1

)

= max
x

[

(1 − t)
(

〈p0, x〉 − f(x)
)

+ t
(

〈p1, x〉 − f(x)
)]

≤ (1 − t)max
x

[

〈p0, x〉 − f(x)
]

+ tmax
x

[

〈p1, x〉 − f(x)
]

= (1 − t)g(p0) + tg(p1).

For the involutivity note that

〈p, x〉 − g(p) = 〈p, x〉 − max
z

[

〈p, z〉 − f(z)
]

≤ 〈p, x〉 −
[

〈p, x〉 − f(x)
]

= f(x)

for all p, and

〈p, x〉 − g(p)
∣

∣

∣

p=df(x)
= 〈p, x〉 −

[

〈p, z〉 − f(z)
]∣

∣

∣

p=df(x)=df(z)

= 〈p, x〉 −
[

〈p, z〉 − f(z)
]∣

∣

∣

z=x
= f(x).

This shows that
Lg(x) = max

p

[

〈p, x〉 − g(p)
]

= f(x),

and the maximum is attained at p = df(x).

3.2 Hamilton’s equations

Now we apply the Legendre transform in q̇ to the Lagrange function (with fixed
t, q) to obtain a function of the momenta pi = ∂L

∂q̇i
, the Hamiltonian

H(t, q, p) := 〈p, q̇〉 − L(t, q, q̇)
∣

∣

∣

p= ∂L
∂q̇

.

This is defined whenever L : R × TQ → R is convex on each fibre TqQ, and
yields a function H : R × T ∗Q→ R which is again fibrewise convex.

To find Lagrange’s equations on Rn in terms of H , express the differential dH
in two different ways:

dH =
∑

i

(∂H

∂qi
dqi +

∂H

∂pi
dpi

)

+
∂H

∂t
dt

=
∑

i

(

pidq̇i + q̇idpi −
∂L

∂qi
dqi −

∂L

∂q̇i
dq̇i

)

− ∂L

∂t
dt

∣

∣

∣

pi=
∂L
∂q̇i

=
∑

i

(

q̇idpi −
∂L

∂qi
dqi

)

− ∂L

∂t
dt.
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From this we read off

q̇i =
∂H

∂pi
,

∂L

∂qi
= −∂H

∂qi
,

∂L

∂t
= −∂H

∂t
,

which combined with Lagrange’s equations ṗi = ∂L
∂qi

yields Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

A more conceptual way to see the equivalence of Hamilton’s and Lagrange’s
equations is via variational principles.

Proposition 3.2. (extended Hamilton’s variational principle).

Let L : R×TQ→ R be fibrewise convex and H : R×T ∗Q→ R the corresponding

Hamiltonian. Then a path q : [a, b] → Q is extremal for L(q) =
∫ b

a
L(t, q, q̇)dt

with fixed q(a), q(b) if and only if (q, p = ∂L
∂q̇

) : [a, b] → T ∗Q is extremal for the
action

A(q, p) =

∫ b

a

(

〈p, q̇〉 −H(t, q, p)
)

dt

with fixed q(a), q(b).

Proof. If (q, p) is extremal for A, then in particular on each fibre T ∗
qQ, p is

extremal for the function p 7→ 〈p, q̇〉 −H(t, q, p). By Proposition 3.1 this means
that p = ∂L

∂q̇
and 〈p, q̇〉−H(t, q, p) = L(t, q, p). So (q, p) is extremal for A if and

only if p = ∂L
∂q̇

and q is extremal for L.

Note that the expression 〈p, q̇〉 is intrinsically defined for a path x = (q, p) :
[a, b] → T ∗Q. We can make this more apparent by writing q = π ◦ x with the
canonical projection π : T ∗Q → Q. Then 〈p, q̇〉 = 〈p, T(q,p)π · ẋ〉 = λ(ẋ), where
λst is the canonical 1-form on T ∗Q,

(λst)(q,p)(v) = 〈p, T(q,p)π · v〉, v ∈ T(q,p)T
∗Q.

If qi are local coordinates on Q and pi dual coordinates on T ∗
qQ, i.e. p =

∑

pidqi ∈ T ∗
qQ, then

λst =
∑

pidqi.

This can be seen by writing a tangent vector to T ∗Q as v =
∑

(vi
∂
∂qi

+ wi
∂
∂pi

,

hence 〈p, Tπ · v〉 =
∑

pivi.

With the canonical 1-form the action functional can be written in the inherently
intrinsic form

A(x) =

∫ b

a

(

x∗λst −H(t, x)dt
)

.

Physicists and Arnold write this as
∫

p dq −H dt.
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Now in local coordinates (qi, pi) as above, the variation of A with δq(a) =
δq(b) = 0 equals

dA(q, p)(δq, δp) =

∫ b

a

(

〈p, δ̇q〉 + 〈q̇, δp〉 − 〈∂H
∂q

, δq〉 − 〈∂H
∂p

, δp〉
)

dt

=

∫ b

a

(

〈−ṗ− ∂H

∂q
, δq〉 + 〈q̇ − ∂H

∂p
, δp〉

)

dt.

So we have shown:

Proposition 3.3. Let H : R×T ∗Q→ R be a (not necessarily fibrewise convex)
Hamiltonian. Then for a smooth path x = (q, p) : [a, b] → T ∗Q the following
are equivalent:

(i) x is extremal for A(x) among variations with fixed q(a), q(b);

(ii) x is extremal for A(x) among variations with fixed x(a), x(b);

(iii) x satisfies Hamilton’s equations in any local coordinates qi on Q and dual
coordinates pi on T ∗

qQ.

The two last propositions together yield the equivalence of Lagrange’s and
Hamilton’s equations for fibrewise convex Hamiltonians.

3.3 Canonical transformations

In the extended Hamilton’s variational principle it becomes apparent which
transformations ψ : (q, p) 7→ (Q,P ) on R2n leave Hamilton’s equations invariant.
For this, note that the first term in the action functional A is the integral of the
1-form

∑

i pidqi over the path (q, p). If we add to this 1-form an exact 1-form dS
the value of the integral changes only by the values of S at the end points, so the
extremals with fixed end points remain the same. This shows that Hamilton’s
equations are invariant under all transformations which satisfy

∑

PidQi −
∑

pidqi = dS.

Since exact and closed forms coincide on R2n, this is equivalent to

∑

dPi ∧ dQi =
∑

dpi ∧ dqi,

i.e. the transformation preserves the standard symplectic form on R2n,

ωst :=
∑

dqi ∧ dpi.

Such a transformation is called canonical by physicists, and symplectic by math-
ematicians. We have just shown:



3.4. ELECTROMAGNETIC FIELDS 25

Proposition 3.4. Symplectic transformations of R2n preserve Hamilton’s equa-
tions.

The following problem shows that the converse is also true, so symplectic trans-
formations are the largest class of transformations under which the equations
of mechanics are invariant.

Problem 3.1. Prove that a transformation of R2n which preserves Hamilton’s
equations for every Hamiltonian is symplectic.

Examples of symplectic transformations:

(i) ψ(q, p) =
(

φ(q), [Dφ(q)−1]T p
)

(pure coordinate transformation);

(ii) ψ(q, p) = (q + q0, p+ p0) (translation);

(iii) ψ(q, p) = (p,−q);
(iv) any area preserving diffeomorphism of R2.

Note that T ∗Q carries the canonical symplectic form ωst = −dλst. By the last
proposition, Hamilton’s equations hold in any local coordinates (qi, pi) on T ∗Q
in which the canonical symplectic form becomes

∑

dqi ∧ dpi. Coordinates qi on
Q and dual coordinates pi on T ∗

qQ are examples of such coordinates on T ∗Q,
but by far not the only ones.

Having preceeded thus far, it is natural to ask: Are there more general spaces
than cotangent bundles on which Hamilton’s equations can be defined? Call a
symplectic atlas on a manifold an atlas all of whose transition maps are sym-
plectic, and a symplectic manifold a manifold with a symplectic atlas. It follows
from Proposition 3.4 that Hamilton’s equations are defined intrinsically on a
symplectic manifold.

It turns out that symplectic manifolds form indeed a large and interesting class
of manifolds, and they provide the natural setting for Hamilton’s equations.
The geometry of symplectic manifolds and the study of Hamiltonian systems on
symplectic manifolds is the subject of Part II.

3.4 Electromagnetic fields

We conclude this chapter by showing how electromagnetic forces fit into the La-
grangian and Hamiltonian formalisms. The electrostatic force is already built in
because it is conservative, but the magnetostatic force is not. In order to include
also dynamic electromagnetic forces, let us start from Maxwell’s equations

div D = ρ; curlE +
∂B

∂t
= 0;

div B = 0; curlH − ∂D

∂t
= j.
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Here E is the electric field, D the dielectric displacement, B the magnetic in-
duction, H the magnetic field, ρ the charge density and j the current density.
In vacuum the fields are related to each other and the velocity of light c by

D = ε0E; B = µ0H;
1

ε0µ0
= c2.

The force on a particle of charge e moving with velocity v equals

F = e(E + v × B).

The third Maxwell equation implies B = curlA for a vector potential A(t, r).
Plugging this into the second equation yields curl (E + ∂A

∂t
) = 0. So E + ∂A

∂t
=

−∇φ for a scalar potential φ(t, r), and the force on a particle becomes

F = e(v × curlA− ∂A

∂t
−∇φ).

Can we find a generalized potential U(t, r, ṙ) such that Lagrange’s equations for
L = 1

2‖ṙ‖2 − U are equivalent to F = mr̈ with the above force F? This will be
the case if we can find U such that

F =
d

dt

∂U

∂ṙ
− ∂U

∂r
.

Since the force F contains no r̈, U must be linear in ṙ,

U(t, r, ṙ) = G(t, r) · ṙ + V (t, r).

For such U ,

d

dt

∂U

∂ṙ
− ∂U

∂r
=
∂G

∂t
+

[∂G

∂r
− (

∂G

∂r
)T

]

ṙ−∇V.

Now the third component of
[

∂G
∂r

− (∂G
∂r

)T
]

v equals

3
∑

i=1

(∂G3

∂xi
− ∂Gi
∂x3

)

vi =
(∂G3

∂x1
− ∂G1

∂x3

)

v1 +
(∂G3

∂x2
− ∂G2

∂x3

)

v2

= −(curlG)2v1 + (curlG)1v2 = (curlG × v)3,

and similarly for the other components. Thus
[

∂G
∂r

− (∂G
∂r

)T
]

v = curlG×v and

d

dt

∂U

∂ṙ
− ∂U

∂r
=
∂G

∂t
− v × curlG −∇V.

We see that this matches the force F above if G = −eA and V = eφ! So the
electromagnetic force is derived from the Lagrange function

L =
1

2
m‖ṙ‖2 + eA(t, r) · ṙ− eφ(t, r).
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The natural generalization of the vector potential A to a manifold Q is as a
time-dependent 1-form A on Q. Incoroprating m and e into the Riemannian
metric and the potentials,

L =
1

2
‖q̇‖2 + 〈A(t, q), q̇〉 − V (t, q)

is the general form of a natural Lagrange function including electromagnetic
forces.

The inclusion of electromagnetism in the Hamiltonian formalism is straightfor-
ward from the Lagrange function. The momentum is

p =
∂L

∂q
= q̇ +A(t, q),

so q̇ = p−A and

H = 〈p, q̇〉 − L

= 〈p, p−A〉 − 1

2
‖p−A‖2 − 〈A, p−A〉 + V

=
1

2
‖p−A‖2 + V.

We see that

H =
1

2
‖p−A(t, q)‖2 + V (t, q)

is the general form of a natural Hamiltonian including electromagnetic forces.
Again the magnetic potential A is a time-dependent 1-form on Q.

Now assume for the moment that A is time-independent. The diffeomorphism

ψ : T ∗Q→ T ∗Q, (q, p) 7→
(

q, p+A(q)
)

pulls back the Hamiltonian H = 1
2‖p − A‖2 + V to ψ∗H = 1

2‖p‖2 + V , so it
transforms away the magnetic term. But it also changes the symplectic structure
of phase space: the 2-form ψ∗ωst is no longer the canonical symplectic form on
T ∗Q. Indeed, the canonical 1-form transforms to

(ψ∗λst)(q,p)(v) = (λst)(q,p+A)(Tψ · v) = 〈p+A, Tπ · Tψ · v〉
= (λst)(q,p)(v) + (π∗A)(q,p)(v).

So

ψ∗λst = λst + π∗A, and

ψ∗ωst = ωst − π∗dA.

We will see in Part II that a general Hamiltonian system is determined entirely
by a Hamiltonian and a symplectic form. THen we have shown:
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A natural Hamiltonian system with magnetic term A, H = 1
2‖p− A‖2 + V , is

equivalent to a system without magnetic term, H = 1
2‖p‖2 + V , but with the

symplectic structure twisted by A, ωst − π∗dA.

For a time-dependent magnetic potential A the same is true, only that now we
obtain a time-dependent symplectic form.

Now remember that the magnetic induction B = curlA. If we write A as
a 1-form A and B as a 2-form B this reads dA = B. So the exact 2-form
B = dA on a manifold Q should play the role of a magnetic field. Being
mathematicians, we immediately feel compelled to call any closed 2-form B on
Q a magnetic field. This indeed makes sense mathematically: the magnetic
field enters by twisting the symplectic form to ωst − π∗B. Note that of B is
not exact we cannot incorporate it any more into the Hamiltonian and leave
the symplectic structure the canonical one. So we are forced to consider more
general symplectic structures if we want to study nonexact magnetic fields.

Physically, nonexact magnetic fields correspond to magnetic monopoles, none
of which have ever been observed in nature. But mathematically they have very
interesting properties, some of which we will see in Part II.



Chapter 4

Geodesics of left-invariant

metrics on Lie groups

4.1 The rigid body

A rigid body is an ensemble of point masses mi at positions Ri ∈ R3 whose
relative distances ‖Ri −Rj‖ are fixed. Let us assume that the mass points are
not all on a line (the degenerate case of all masses on a line will be treated in
a problem). Fix a reference position of the body. Then an arbitrary position
is obtained from the reference position by a uniquely determined rigid motion,
i.e. a translation and rotation applied to all the positions Ri. We will only
consider the case that one point of the body remains fixed. For force-free mo-
tion without constraints this can be achieved by transforming to center-of-mass
coordinates, and the fixed point is the center of mass. In general, the existence
of a fixed point is an additional constraint, and the fixed point need not be the
center of mass (even for force-free motion). Choose coordinates such that the
fixed point is the origin. Then positions of the rigid body are obtained from the
reference position by pure rotations, i.e. by elements of SO(3).

So a motion of the rigid body is described by a curve g(t) in the group SO(3).
the position of mass mi at time t being g(t)Ri. It will be useful to express
vectors in two different coordinate systems: the space coordinate system which
is fixed in space, and the body coordinate system which rotates with the body.
Vectors in space coordinates are written by small letters and in body coordiantes
by capital letters. A vector R in body coordinates corresponds to the vector
r = g(t)R is space coordinates.

The velocity of the mass mi in space coordinates is ṙi = ġRi = (ġg−1)ri, where
the matrix ġg−1 is skew-symmetric. Recall that every skew-symmetric operator
on R3 can be written as the cross product with a uniquely determined vector
(this follows simply because the cross product operators form a 3-dimensional
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subspace of the 3-dimensional space of skew-symmetric operators). So there
exists a unique vector ω = ω(t) such that

ṙi = ω × ri for all i.

ω is called the angular velocity in space coordinates. The angular velocity in
body coordinates is Ω = g−1ω.

The total kinetic energy of the rigid body equals

T =
1

2

∑

mi‖ω × ri‖2 =
1

2

∑

mi‖Ω × Ri‖2

=
1

2

∑

mi〈Ri × (Ω × Ri),Ω〉 =
1

2

∑

mi〈Ω‖Ri‖2 − Ri〈Ω,Ri〉,Ω〉

=
1

2

∑

mi

(

‖Ri‖2‖Ω‖2 − 〈Ri,Ω〉2
)

=:
1

2
〈IΩ,Ω〉.

The positive definite operator I : R
3 → R

3 is called the inertia tensor of the
rigid body around the origin.

For the free rigid body (with a fixed point), i.e. in the absence of external forces,
the Lagrange function equals the kinetic energy, and the equations of motions
can be derived from the expression for T . This will be done in Section 4.3. Since
this causes no additional difficulties, we will derive the equations of motion for
arbitrary Lie groups – which also gives me a good reason to review in the next
section some basic facts about Lie groups.

Problem 4.1. Show that a rigid body all of whose mass points lie on one line in
a constant gravitational field is equivalent to a spherical pendulum. How is the
inertia tensor related to the mass and length of the pendulum?

4.2 Lie groups and Lie algebras

Definition. A Lie group is a manifold G with a group operation · such that
G×G→ G, (g, h) 7→ g · h is a smooth map.

Problem 4.2. Prove that left multiplication Lg : h 7→ gh, right multiplication
Rg : h 7→ hg and inversion g 7→ g−1 are diffeomorphisms of G.

The Lie algebra

A vector field X on G is called left-invariant (right-invariant) if Lg∗X = X
(Rg∗X = X) for all g ∈ G. A left-invariant vector field is determined uniquely
by its value at the identity e ∈ G, and conversely, every X ∈ TeG defines a left-
invariant vector field X = XG via Xe = TeLg ·X . This defines an isomorphism
between TeG and the space of left-invariant vector fields.
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Since Lg∗[X,Y ] = [Lg∗X,Lg∗Y ], the space of left-invariant vector fields is closed
under the Lie bracket. Thus the Lie bracket on vector fields induces a bracket
on TeG via

[X,Y ] := [X,Y]e.

Definition. A Lie algebra is a vector space V with a bilinear operation [ , ] :
V → V satisfying

(i) (skew-symmetry) [X,Y ] = −[Y,X ];

(ii) (Jacobi identity) [[X,Y ], Z] + [[Y, Z], X ] + [[Z,X ], Y ] = 0.

g := TeG with the bracket [X,Y ] := [X,Y]e is called the Lie algebra of the Lie
group G.

The exponential map

Given X ∈ g, let γX(t) be the integral curve of X starting at e. The curves
t 7→ γX(s + t) and t 7→ γX(s)γX(t) are both integral curves of X starting at
γX(s), hence they are equal:

γX(s+ t) = γX(s)γX(t).

This shows that γX(t) is defined for all t ∈ R and defines a smooth 1-parameter
subgroup of G.

Definition. The exponential map of G is exp : g → G, exp(X) := γX(1).

It follows that exp(tX) = γX(t), and the flow φ
X
t of X is given by

φ
X
t (g) = g exp tX.

In particular Xg = d
dt

∣

∣

t=0
g exp tX , so the left-invariant vector field X is the

vector field induced by the action of G on itself via right multiplication.

In general, exp : g → G is not a group homomorphism. However, restricted to
commuting elements of g it is:

Lemma 4.1. If [X,Y ] = 0 then exp(X + Y ) = expX expY .

Proof. Denote the flows of X,Y by φ
X
t , φ

Y
t . Since [X,Y]e = [X,Y ] = 0 and

[X,Y] is left-invariant, [X,Y] = 0. This implies d
dt

(φ
Y
t )∗X = (φ

Y
t )∗[Y,X] = 0,

and therefore (φ
Y
t )∗X = X. By Lemma A.1, the flow φ

Y
t ◦ φX

t is generated by

the vector field Y + (φ
Y
t )∗X = X + Y, thus

exp tX exp tY = φ
Y
t ◦ φX

t (e) = φ
X+Y
t (e) = exp t(X + Y ).
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The adjoint action

Definition. Conjugation LgRg−1 : G→ G, h 7→ ghg−1 induces linear maps

Adg : g → g, Adg := Te(LgRg−1);

adX : g → g, adXY :=
d

dt

∣

∣

t=0
Adexp tXY.

Denote by Ad∗
g, ad∗

X : g∗ → g∗ the adjoint maps.

Obviously Adgh = Adg ◦Adh and Ad∗
gh = Ad∗

h ◦Ad∗
g, so Ad (resp. Ad∗) defines

a left (resp. right) representation of G on the vector space g. The following
lemma provides a useful way of computing brackets:

Lemma 4.2. adXY = [X,Y ].

Proof. For any g ∈ G,

(R∗
gY)e = TgRg−1 ◦ TeLg · Y = AdgY.

So if φt = Rexp tX is the flow of X,

(φ∗tY)e = Adexp tXY.

It follows that

adXY =
d

dt

∣

∣

t=0
(φ∗tY)e = [X,Y]e = [X,Y ].

Lie group homomorphisms

Lemma 4.3. For a Lie group homomorphism f : G→ H,

f ◦ exp = exp ◦Tef : g → H.

Proof. For X ∈ g the curve t 7→ f(exp tX) satisfies

d

dt
f(exp tX) = Texp tXf ◦ TeLexp tX ·X = Te(f ◦ Lexp tX) ·X

= Te(Lf(exp tX) ◦ f) ·X = TeLf(exp tX) ◦ Tef ·X
= (Tef ·X)

f(exp tX)
,

so it is the integral curve of (Tef ·X) starting at e: f(exp tX) = exp(tTef ·
X).

Corollary 4.4. For a Lie group homomorphism f : G → H, Tef : g → h is a
Lie algebra homomorphism.
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Proof. Differentiating Lf(g)Rf(g)−1

(

f(h)
)

= f(ghg−1) with respect to h yields

Adf(g) ◦ Tef = Tef ◦Adg : g → h,

and therefore

Tef · [X,Y ] = Tef · d
dt

∣

∣

t=0
Adexp tXY

=
d

dt

∣

∣

t=0
Adf(exp tX) ◦ Tef · Y

=
d

dt

∣

∣

t=0
Adexp tTef ·X) ◦ Tef · Y

= [Tef ·X,Tef · Y ].

Corollary 4.5. If G is connected and f1, f2 : G→ H are Lie group homomor-
phisms such that Tef1 = Tef2, then f1 = f2.

Proof. By the hypothesis and Lemma 4.3, f1 ◦ exp = f2 ◦ exp : g → H . This
implies the f1 = f2 on a neighbourhood U of e in G, and consequently f1 = f2
on the subgroup K ⊂ G generated by U . Now K is clearly open, and it is closed
because G \ K = ∪g∈G\KgK is a union of open sets. Since G is connected,
K = G.

Applying Lemma 4.3 and Corollary 4.4 to the Lie group homomorphismLgRg−1 :
G→ G, we obtain

exp(AdgX) = g(expX)g−1, and

Adg[X,Y ] = [AdgX,AdgY ].

Problem 4.3. Show that for a matrix group G ⊂ GL(n,R),

• exp(X) = eX is the exponential of the matrix X ∈ g ⊂ Rn×n;

• AdgX = gXg−1 for g ∈ G, X ∈ g;

• [X,Y ] = XY − Y X for X,Y ∈ g.

Problem 4.4. Show that the differential of the determinant det : GL(n,R) → R∗

at the identity is the trace tr : Rn×n → R, and conclude that

det(eX) = etrX , X ∈ R
n×n.

Let us summarize the definitions and formulae of this section.
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Summary: formulae for Lie groups

For g, h ∈ G, X,Y ∈ g and s, t ∈ R,

• XG
g := TeLg ·X = d

dt

∣

∣

t=0
g exp tX ;

• [X,Y ] := [XG,YG]e;

• exp(s+ t)X = exp sX exp tX ;

• [X,Y ] = 0 implies exp(X + Y ) = exp(X) exp(Y );

• If f is a Lie group homomorphism then f ◦ exp = exp ◦Tef , and Tef is a
Lie algebra homomorphism;

• Adg := Te(LgRg−1) : g → g;

• Adgh = Adg ◦ Adh, Ad∗
gh = Ad∗

h ◦ Ad∗
g;

• exp(AdgX) = g(expX)g−1;

• Adg[X,Y ] = [AdgX,AdgY ];

• adXY := d
dt

Adexp tXY = [X,Y ].

Definition. A torus is a compact connected abelian Lie group. A maximal
torus in a Lie group G is a subtorus T ⊂ G which is not contained in any bigger
subtorus.

Problem 4.5. Prove that any n-dimensional torus is isomorphic to R
n/Zn.

Problem 4.6. (cf. [3]). Let G be a compact connected Lie group. Prove:

(i) G possesses a maximal torus T .

(ii) The map G/T × T → G, (g, t) 7→ gtg−1, is surjective.

(iii) Every element of G is contained in a maximal torus.

(iv) Any two maximal tori are conjugated.

(v) The inclusion T ⊂ G induces a surjection on the fundamental group.

Problem 4.7. Prove that π2(G) = 0 for every compact Lie group G.

4.3 Geodesics of left-invariant metrics

Euler’s equation

Let G be a Lie group with Lie algebra g. A left-invariant metric on G is
specified by an inner product on the Lie algebra which we write in the form
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〈I·, ·〉. Here 〈 , 〉 is the duality pairing between a space and its dual, and the
inertia tensor I : g → g∗ is linear, self-adjoint and positive definite (although
positive definiteness is not needed here). Denote by Lg left multiplication and
by Lg∗ : ThG→ TghG, L∗

g : T ∗
ghG→ T ∗

hG the (co)tangential maps, and similarly
for right multiplication Rg. Then the metric at a point g ∈ G is given by 〈Ig·, ·〉,
where

Ig := L∗
g−1ILg−1∗ : TgG→ T ∗

gG.

For a curve g(t) in G consider the following quantities:

• ġ ∈ TgG the angular velocity;

• ω := Rg−1∗ġ ∈ g the angular velocity in space coordinates;

• Ω := Lg−1∗ġ = Adg−1ω ∈ g the angular velocity in body coordinates;

• Ig ġ ∈ T ∗
gG the angular momentum;

• µ := R∗
gIg ġ ∈ g∗ the angular momentum in space coordinates;

• M := L∗
gIg ġ = Ad∗

gµ = IΩ ∈ g∗ the angular momentum in body coordi-
nates.

These notations are justified as follows: We think of the motion g(t) as de-
scribing a rigid body whose configuration at time t is obtained from its initial
configuration by left roation by g(t). Then the angular velocity in space coor-
dinates is the unique ω ∈ g such that ġ = d

ds

∣

∣

s=0
exp(sω)g = Rg∗ω, etc.

Now suppose that g(t) is a geodesic, i.e. a solution of the Lagrangian system
with Lagrange function

L(g, ġ) =
1

2
〈Ig ġ, ġ〉 =

1

2
〈IΩ,Ω〉 =

1

2
〈M,Ω〉 =

1

2
〈µ, ω〉.

Note that for G = SO(3) this is indeed the Lagrange function of the free rigid
body fixed at a point. Since L is invariant under left multiplication, Noether’s
Theorem provides a conserved quantity for every X ∈ g which takes the form

〈∂L
∂ġ
,
d

ds

∣

∣

s=0
exp(sX)g〉 = 〈Ig ġ, Rg∗X〉 = 〈µ,X〉.

So the space angular momentum is conserved,

dµ

dt
= 0.

For M = Ad∗
gµ we obtain

dM

dt
=

d

ds

∣

∣

s=0
Ad∗

g(t+s)µ =
d

ds

∣

∣

s=0
Ad∗

g(t)−1g(t+s)Ad∗
g(t)µ

= ad∗
ΩAd∗

gµ = ad∗
ΩM,
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so the body angular momentum satisfies Euler’s equation

dM

dt
= ad∗

ΩM, Ω = I−1M.

This is a first order ODE for Ω. From its solution Ω(t) the geodesic g(t) can be
recovered by solving the ODE on the group ġ = Lg∗Ω. So we have proved:

Proposition 4.6. A curve g(t) in G is a geodesic ofthe left-invariant metric if
and only if its body angular velocity Ω = Lg−1∗ġ satisfies Euler’s equation

dM

dt
= ad∗

ΩM, Ω = I−1M.

Conserved quantities

Since L = T equals the total energy, conservation of energy yields

T =
1

2
〈M,Ω〉 = const.

This can also be verified directly from Euler’s equation:

dT

dt
= 〈Ṁ,Ω〉 = 〈ad∗

ΩM,Ω〉 = 〈M, [Ω,Ω]〉 = 0.

Further conserved quantities come from Casimir functions, i.e. functions C :
g∗ → R satisfying ad∗

dξC
ξ = 0 for all ξ ∈ g∗ (see Section ???). By Euler’s

equation,

d

dt
C(M) = 〈Ṁ, dMC〉 = 〈M, [Ω, dMC]〉 = −〈ad∗

dMCM,Ω〉 = 0.

So every Casimir function yields a conserved quantity

C(M) = const.

Next suppose that g admits an Ad-invariant inner product 〈 , 〉inv (which is
always the case, e.g., if G is compact). Ad-invariance implies

〈[X,Y ], Z〉inv = 〈X, [Y, Z]〉inv, X, Y, Z ∈ g.

Now identify g and g∗ via the invariant inner product and drop the subscript
inv. Then 〈ad∗

XY, Z〉 = 〈Y, [X,Z]〉 = 〈[Y,X ], Z〉, thus

ad∗
XY = −[X,Y ].

So we can write Euler’s equation on g as

dM

dt
= −[Ω,M ].
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The function C(X) = 〈X,X〉 is a Casimir function:

ad∗
dXC

X = −[dXC,X ] = −[2X,X ] = 0.

So we have a conserved quantity

〈M,M〉 = const.

In the case G = SO(3) the two conserved quantities determine the motion of
the body angular momentum (and hence of the body angular velocity): Tra-
jectories of M are the intersections of spheres {‖M‖ = const} with ellipsoids
{〈I−1M,M〉 = const}. Figure ??? shows the trajectories on the sphere in the
case of 3 distinct eigenvalues of the inertia tensor. The 6 critical points cor-
respond to stationary rotations around the 3 principal axes (in positive and
negative directions). The rotations around the middle axis are connected by 4
heteroclinic orbits, which shows that these rotations are unstable. The rota-
tions around the largest and smallest axes are stable for the motion of M . But
this does not reveal whether they are stable for the motion of the rigid body.
We will see in the next section that they are indeed stable. All other orbits
are periodic for the motion of M . The next section shows that they are not
necessarily periodic for the motion of the rigid body, but “almost periodic”.

Poinsot’s Theorem

The motion on the Lie group G can be visualized by describing how its adjoint
action moves points in the Lie algebra. For G = SO(3) the adjoint representa-
tion coincides with the standard representation on R3, so the motion on the Lie
algebra corresponds to the motion of the rigid body in space. For G = SO(n),
n > 3, this is no longer the case.

Let E0 := {X ∈ g | 〈IX,X〉 = 1} be the inertia ellipsoid at time 0 and

Et := Adg(t)E0 = {X ∈ g | 〈Ad∗
g−1IAdg−1X,X〉 = 1}

the inertia ellipsoid at time t in space coordinates. The tangent plane to Et is
perpendicular to µ at the points X where the normal vector is parallel to µ,
i.e. Ad∗

g−1IAdg−1X = cµ, or equivalently,

X = cAdgI
−1Ad∗

gµ = cAdgI
−1M = cAdgΩ = cω.

The constant c is determined from the condition X ∈ Et,

1 = 〈cµ,X〉 = 〈cµ, cω〉 = 2c2T,

so c = ±1/
√
T , where T = L is the kinetic energy. It follows that

〈µ,X〉 = 〈µ, cω〉 = ±
√

2T .
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So the ellipsoid Et is tangent to the invariant plane

{X ∈ g | 〈µ,X〉 =
√

2T}

at the point ω(t)/
√

2T . Since ω(t) is the instantaneous axis of rotation, the
point of tangency has zero velocity, and we have proved

Theorem 4.7 (Poinsot’s Theorem). The inertia ellipsoid rolls without slipping
on the invariant plane {X ∈ g | 〈µ,X〉 =

√
2T}.

ForG = SO(3), Poinsot’s Theorem gives us a complete description of the motion
of the free rigid bodyfixed at a point: Suppose that the three eigenvalues of the
inertia tensor are distinct. There are stationary rotations around the 3 principal
axes of inertia. The rotations around the largest and smallest axes are stable,
while the roation around the middle axis is unstable. There are heteroclinic
orbits between rotations around the middle axis in opposite directions. All
other orbits lie on invariant 2-tori on which the flow is linear. Orbits on an
invariant torus are either periodic (for rational slope) or dense in the torus (for
irrational slope). The trajectory of the point of tangency in the invariant plane
is either a closed curve or dense in an annulus.

Stationary rotations

A stationary rotation is a geodesic on G which is also a 1-parameter subgroup.

Write a stationary rotation as g(t) = exp tX . Its angular velocity in body
coordinates is

Ω = Lg−1∗ġ = X = const.

So g(t) = exp tΩ is a geodesic iff Ω = const satisfies Euler’s equation

0 = Ṁ = ad∗
Ω(IΩ).

For G = SO(3) identify g and g∗ via the Euclidean metric on g. Then the
last equation becomes [Ω, IΩ] = 0, so Ω is an eigenvector of I. If I has 3 dis-
tinct eigenvalues, then the 3 eigendirections of I correspond to the 6 stationary
rotations discussed earlier in this section.

Another special case occurs if I defines a biinvariant metric on G, i.e. the inner
product 〈I·, ·〉 on g is Ad-invariant. Using this product to identify g and g∗,
I becomes the identity operator. Thus all motions are stationary rotations in
this case. Every geodesic is either closed, or dense in the translate of a subtorus
of G. In particular, there are no heteroclinic orbits. For G = SO(3) this case
corresponds to the round metric on S3, in which all geodesics are closed.



Part II

Symplectic Manifolds
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Chapter 5

Linear symplectic geometry

5.1 Symplectic vector spaces

Definition. A symplectic vector space (V 2n, ω) is a vector space V with a
nondegenerate skew-symmetric bilinear form ω. Here nondegenerate means that
v 7→ ω(v, ·) defines an isomorphism V 7→ V ∗.

A linear map Ψ : (V1, ω1) → (V2, ω2) between symplectic vector spaces is called
symplectic if Ψ∗ω2 ≡ ω2(Ψ·,Ψ·) = ω1.

If U is a vector space, U⊕U∗ carries a canonical symplectic structure ωst defined
by

ωst

(

(u, u∗), (v, v∗)
)

:= v∗(u) − u∗(v).

In coordinates qi on U and dual coordinates pi on U∗, the standard form is
given by

ωst =
∑

dqi ∧ dpi.

The ω-orthogonal complement of a linear subspace W ⊂ V is

W⊥ω := {v ∈ V
∣

∣ ω(v, w) = 0 for all w ∈W}.

Note that dimW + dimW⊥ω = 2n, but W ∩W⊥ω may not be {0}. W is called

• symplectic if W ∩W⊥ω = {0};

• isotropic if W ⊂W⊥ω ;

• coisotropic if W⊥ω ⊂W ;

• Lagrangian if W⊥ω = W .

Note that dimW is even forW symplectic, dimW ≤ n forW isotropic, dimW ≥
n for W coisotropic, and dimW = n for W Lagrangian.

41
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The following obvious lemma will turn out to be very useful:

Lemma 5.1. Let W be a linear subspace of a symplectic vector space (V 2n, ω).
Then

(i) (W⊥ω )⊥ω = W ;

(ii)
(

W/(W ∩W⊥ω ), ω
)

is a symplectic vector space.

Consider a subspace W of a symplectic vector space (V, ω) and let

N := W ∩W⊥ω .

Choose subspaces V1 ⊂ W , V2 ⊂ W⊥ω and an isotropic subspace V3 ⊂ (V1 ⊕
V2)

⊥ω such that

W = V1 ⊕N, W⊥ω = N ⊕ V2, (V1 ⊕ V2)
⊥ω = N ⊕ V3.

The decomposition
V = V1 ⊕N ⊕ V2 ⊕ V3

provides a symplectic isomorphism

(V, ω) → (W/N,ω) ⊕ (W⊥ω/N, ω) ⊕ (N ⊕N∗, ωst),

v1 + n+ v2 + v3 7→
(

v1, v2, (n,−iv3ω)
)

.

The following lemma provides a linear normal form for a symplectic vector space
with a linear subspace:

Lemma 5.2. (linear normal form).

Every symplectic vector space (V 2n, ω) possesses a symplectic basis e1, f1, . . . , en, fn
satisfying ω(ei, ej) = ω(fi, fj) = 0, ω(ei, ej) = δij. Moreover, given a subspace
W ⊂ V , the basis can be chosen such that

• W = span{e1, . . . , ek+l, f1, . . . , fk};

• W⊥ω = span{ek+1, . . . , en, fk+l+1, . . . , fn};

• W ∩W⊥ω = span{ek+1, . . . , ek+l}.

Proof. Let N := W ∩W⊥ω , l := dimN and 2k+ l := dimW . Pick e1 ∈W \N .
There exists f1 ∈ W \ N such that ω(e1, f1) = 1. Now intersect V , W and
W⊥ω with span{e1, f1}⊥ω and continue. Thus we find linearly independent
e1, f1, . . . , ek, fk ∈W \N satisfying ω(ei, ej) = ω(fi, fj) = 0, ω(ei, ej) = δij .

In a similar way, construct ek+l+1, fk+l+1, . . . , en, fn ∈ W⊥ω \ N . Set V1 :=
span{e1, f1, . . . , ek, fk} and V2 := span{ek+l+1, fk+l+1, . . . , en, fn}. Note that
(V1 ⊕ V2)

⊥ω is a symplectic subspace containing N .
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Next pick any nonzero ek+1 ∈ N . There exists fk+1 ∈ (V1 ⊕ V2)
⊥ω such

that ω(ek+1, fk+1) = 1. Continuing like this, we find a linearly independent
ek+1, . . . , ek+l ∈ N and fk+1, . . . , fk+l ∈ (V1 ⊕ V2)

⊥ω satisfying ω(ei, ej) =
ω(fi, fj) = 0, ω(ei, ej) = δij .

In particular, we get the following normal forms:

• W = span{e1, f1, . . . , ek, fk} if W is symplectic;

• W = span{e1, . . . , ek} if W is isotropic;

• W = span{e1, . . . , en, f1, . . . , fk} if W is coisotropic;

• W = span{e1, . . . , en} if W is Lagrangian.

Lemma 5.2 reduces the study of symplectic vector spaces to the standard sym-
plectic space (R2n, ωst =

∑

dqi ∧ dpi).

5.2 Complex structures

A complex structure on a vector space V is an endomorphism J : V → V with
J2 = −1l. A complex structure J is called compatible with a symplectic form ω
if

gJ := ω(·, J ·)
is an inner product (i.e. symmetric and positive definite).

Lemma 5.3. Let (V, ω) be a symplectic vector space. There exists a natural
continuous map from the space of all inner products to the space of all compatible
complex structures which maps each induced inner product gJ to J . Thus the
space of compatible complex structures is nonempty and contractible.

Proof. An inner product g defines an isomorphism A : V → V via ω(·, ·) =
g(A·, ·). Skew-symmetry of ω implies AT = −A. Recall that each positive
definite operator P possesses a unique positive definite square root

√
P , and√

P commutes with every operator with which P commutes. So we can define

Jg := (AAT )−
1

2A.

It follows that J2
g = −1l, and

ω(·, J ·) = g(
√
AAT ·, ·)

is an inner product. Continuity of the mapping g 7→ Jg follows from continuity
of the square root. If g = gJ for some J then A = J = Jg.

Contractibility follows from convexity of the space of inner products and the
following general fact: If f : X → Y , g : Y → X are continuous maps between
topological spaces satisfying f ◦ g = 1l, then a contraction ht of X induces a
contraction f ◦ ht ◦ g of Y .
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On (R2n, ωst = dq ∧ dp) the standard complex structure

Jst :=

(

0 −1l
1l 0

)

induces the Euclidean inner product
∑

(dqi ⊗ dqi + dpi ⊗ dpi).

A Hermitian structure on a vector space V 2n is a compatible pair (ω, J) of a
symplectic and a complex structure. This induces a Hermitian product (·, ·) on
the complex vector space (V, J) via

(v, w) := 〈v, w〉 − iω(v, w),

where 〈·, ·〉 = ω(·, J ·). (Check that (Jv, w) = i(v, w) and (w, v) = (v, w)).
Conversely, a Hermitian metric (·, ·) on a complex vector space (V, J) induces a
compatible symplectic form via

ω := −ℑ(·, ·).

Note that the space of compatible symplectic structures on a complex vector
space (V, J) is convex, in particular contractible. So we can summarize the above
discussion as follows: The forgetful maps (ω, J) → ω, respectively (ω, J) → J ,
define fibrations with contractible fibres from the space of Hermitian structures
onto the space of symplectic, respectively complex, structures.

5.3 The symplectic group

Let ω = ωst and J = Jst be the standard symplectic and complex structure on
R2n and 〈 , 〉 the Euclidean inner product.

Definition. The symplectic group Sp(2n) is the set of all linear symplectic maps
of (R2n, ωst), thus

Sp(2n) = {Ψ ∈ GL(2n,R) | Ψ∗ω = ω} = {Ψ ∈ GL(2n,R) | ΨTJΨ = J}.

Remark. Sp(2n) is not the “symplectic group” Sp(n) considered in Lie group
theory. E.g., the latter is compact, while “our” symplectic group is not.

Lemma 5.4. (i) Sp(2n) is a subgroup of GL(2n,R) which is closed under
transposition.

(ii) Each symplectic matrix has determinant 1.

(iii) If λ is an eigenvalue of a symplectic matrix then λ−1, λ̄ and λ̄−1 are also
eigenvalues.

(iv) If two eigenvalues λ, µ of a symplectic matrix satisfy λµ 6= 1 then the
eigenspaces are ω-orthogonal.
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Proof. (i) The subgroup property is obvious. The transposition property follows
by inverting ΨTJΨ = J .

(ii) This holds because a symplectic map preserves the standard volume form
1
n!ω

n.

(iii) Apply ΨTJ to Ψv = λv to obtain Jv = λΨTJv, so λ−1 is an eigenvalue of
ΨT hence of Ψ. The rest is clear.

(iv) If Ψv = λv, Ψw = µw then ω(v, w) = ω(Ψv,Ψw) = λµω(v, w).

Identify R2n with Cn by identifying multiplication by J in R2n with multipli-
cation by i in Cn. Vectors (x, y) ∈ R2n correspond to x+ iy ∈ Cn. A complex
linear operator X + iY corresponds to

(X + iY )(x+ iy) = (Xx− Y y) + i(Xy + Y x) =

(

X −Y
Y X

) (

x
y

)

,

and the operator X + iY is unitary iff

1l = (X + iY )(XT − iY T ) = (XXT + Y Y T ) + i(Y XT −XY T ).

This allows us to consider GL(n,C) and U(n) as subgroups of GL(2n,R).

Lemma 5.5.

Sp(2n) ∩O(2n) = O(2n) ∩GL(n,C) = GL(n,C) ∩ Sp(2n) = U(n).

Proof. It is easy to see that any two of the three conditions

Ψ ∈ Sp(2n) ⇐⇒ ΨTJΨ = J,

Ψ ∈ O(2n) ⇐⇒ ΨΨT = 1l,

Ψ ∈ GL(n,C) ⇐⇒ ΨJ = JΨ

imply the third one. If Ψ ∈ O(2n) ∩ GL(n,C) it is of the form Ψ =
(

X −Y
Y X

)

with XXT + Y Y T = 1l and Y XT −XY T = 0, so Ψ ∈ U(n).

Proposition 5.6. Every symplectic matrix has a unique decomposition

Ψ = PQ,

where P is symplectic and positive definite, and Q ∈ U(n). (P sQ)s∈[0,1] defines
a deformation retraction of Sp(2n) onto U(n).

The proof is based on the following lemma:

Lemma 5.7. If P is symplectic and positive definite then P s is symplectic for
every real number s > 0.
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Proof. Decompose R2n into eigenspaces Vλ of P to eigenvalues λ. Then Vλ is
the eigenspace of P s to the eigenvalue λs. For v ∈ Vλ and w ∈ Vµ,

ω(P sv, P sw) = (λµ)sω(v, w).

Now either λµ = 1; or λµ 6= 1, in which case ω(v, w) = 0 by Lemma 5.4. In
either case ω(P sv, P sw) = ω(v, w). This proves that P s is symplectic because
the eigenvectors generate R2n.

Proof of Proposition 5.6. Any invertible matrix Ψ can be uniquely decomposed
as Ψ = PQ where P =

√
ΨΨT is positive definite and Q orthogonal. If Ψ

is symplectic then P is symplectic by Lemma 5.7. Thus Q is symplectic and
therefore unitary by Lemma 5.5. The continuous retraction P sQ stays in the
symplectic group again by Lemma 5.7.

Problem 5.1. Prove that the determinant det : U(n) → S1 induces an isomor-
phism between π1

(

U(n)
)

and π1(S
1) ∼= Z. In particular, π1

(

Sp(2n)
) ∼= Z.

Problem 5.2. (cf. [21]). Find an explicit diffeomorphism from Sp(2) to an open
solid torus. Describe the regions of real / complex eigenvalues.

5.4 Symplectic vector bundles

Definition. Let E2n →M be a real vector bundle of rank 2n over a manifold.

A symplectic structure on E is a smooth section ω in the bundle Λ2E∗ → M
such that each ωx ∈ Λ2E∗

x is a linear symplectic form.

A complex structure on E is a smooth section J in the bundle Hom(E,E) → M
such that each Jx ∈ Hom(Ex, Ex) satisfies J2

x = −1l. A complex structure J
is called compatible with a symplectic structure ω if ω(·, J ·) defines an inner
product on E.

A Hermitian structure on E is a compatible pair (ω, J) of a symplectic and
a complex structure, or equivalently, a complex structure with a Hermitian
product.

The following proposition is an easy consequence of Lemma 5.3, where spaces
of sections are equipped with any reasonable topology, e.g. the C∞

loc topology:

Proposition 5.8. (i) The space of compatible complex structures on a sym-
plectic vector bundle (E,ω) is nonempty and contractible.

(ii) The space of compatible symplectic structures on a complex vector bundle
(E, J) is nonempty and convex.

(iii) A Hermitian vector bundle (E,ω, J) possesses local unitary trivializations,
i.e. trivializations Ψ : E|U 7→ U × Cn satisfying Ψx ◦ Jx = Jst ◦ Ψx and
Ψ∗
xωst = ωx for each x ∈ U .
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This proposition implies that the homotopy theories of symplectic, complex and
Hermitian vector bundles are the same. In particular, obstructions to trivial-
ization of a symplectic vector bundle (E,ω) are measured by the Chern classes
ck(E,ω) = ck(E, J) for any compatible complex structure J .

Problem 5.3. Let E → Σ be a Hermitian vector bundle over a compact Riemann
surface Σ with boundary ∂Σ.

(i) Show: If ∂Σ 6= ∅ then E possesses a (global) unitary trivialization.

(ii) If ∂Σ = ∅ let Σ = Σ1∪Σ2 be a decomposition into two surfaces along their
common boundary circle C = ∂Σ1 = −∂Σ2, oriented as the boundary of
Σ1. Let Ψi : E|Σi

→ Σi ×Cn be unitary trivializations. Prove that c1(E)
equals the degree of the map

det(Ψ1 ◦ Ψ−1
2 |C) : C 7→ S1.

Combined with the following problem, this problem provides a hands-on ap-
proach to the first Chern class in arbitrary manifolds.

Problem 5.4. (i) Prove that every singular homology class σ ∈ Hk(M ; Z) on
a manifold M can be represented by a smooth map f : N → M of a
smooth closed k-manifold N to M .

(ii) Prove that every 2-homology class σ ∈ H2(M ; Z) on a manifold of dimen-
sion ≥ 4 can be represented by an embedded closed surface. Hint: This is
easy except for dimM = 4.

(iii) Show that the genus of an embedded surface representing a 2-homology
class in a closed 4-manifold can always be chosen arbitrarily high. Find
examples where the genus cannot be chosen arbitrarily low.

Remark. The minimal genus of an embedded closed surface representing a ho-
mology class in a closed 4-manifold is a fascinating and highly nontrivial prob-
lem. The following conjecture was only recently proved in full generality by
Ozsváth and Szabó [17], building on work of Kronheimer, Mrowka and Taubes
and using Seiberg-Witten theory:

Thom Conjecture: Every symplectic 2-dimensional closed submanifold of a

closed symplectic 4-manifold minimizes the genus of an embedded surface in its

homology class.

We end this section with a normal form for subbundles of symplectic vector
bundles:

Proposition 5.9. Let (E2n, ω) be a rank 2n symplectic vector bundle and
W 2k+l ⊂ E a rank 2k+ l subbundle such that N := W ∩W⊥ω has constant rank
l. Then

(E,ω) ∼= (W/N,ω) ⊕ (W⊥ω/N, ω) ⊕ (N ⊕N∗, ωst).



48 CHAPTER 5. LINEAR SYMPLECTIC GEOMETRY

Proof. Pick a compatible almost complex structure J on (E,ω). Then

V1 := W ∩ JW, V2 := W⊥ω ∩ JW⊥ω , V3 := JN

are smooth subbundles of E. As in the discussion preceding Lemma 5.2, the
decomposition

E = V1 ⊕N ⊕ V2 ⊕ V3

yields the desired isomorphism.



Chapter 6

Symplectic manifolds

6.1 Definition

Definition. A symplectic atlas on a manifold is an atlas all of whose transition
maps are symplectic. A symplectic manifold is a manifoldM2n with a symplectic
atlas.

Since Hamilton’s equations are invariant under symplectic transformations, they
are intrinsically defined on a symplectic manifold: Every Hamiltonian H : M →
R induces a Hamiltonian vector field XH on M which has the form

∑

i

(∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)

in any symplectic coordinates (qi, pi).

A symplectic manifold carries a canonical 2-form ω obtained by pulling back
the standard form ωst =

∑

dqi ∧ dpi on R2n under any symplectic coordinate
map. The form ω is closed because ωst is exact. Moreover, ω is nondegenerate
in the sense that v 7→ ωx(v, ·) defines an isomorphism TxM → T ∗

xM .

Definition. A symplectic manifold (M,ω) is a manifold M2n with a closed
nondegenerate 2-form ω.

We have seen that the first definition implies the second one. The converse is
a consequence of the following theorem (take as symplectic atlas all coordinate
maps φ as in the theorem):

Darboux’ Theorem: Let (M,ω) be a manifold with a closed nondegenerate
2-form. Then every x ∈ M possesses a coordinate neighbourhood U and a
coordinate map φ : U → V ⊂ R2n such that φ∗ωst = ω.

Darboux’ Theorem will be proved in the next chapter. But let us first see some
examples of symplectic manifolds.

49
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Example 6.1. (cotangent bundles).

Let T ∗Q
π→ Q be the cotangent bundle of a manifold Qn. Recall from Part I

that the expression
∑

pidqi is independent of coordinates qi on Q and dual coor-
dinates pi on T ∗

qQ and thus defines a canonical 1-form λst on T ∗Q. Intrinsically,

(λst)(q,p) · v = 〈p, T(q,p)π · v〉 for v ∈ T(q,p)T
∗Q,

where 〈 , 〉 is the pairing between T ∗
qQ and TqQ. The 2-form ωst := −dλst is

clearly closed, and the coordinate expression ωst =
∑

dqi ∧ dpi shows that it is
also nondegenerate. So ωst defines a canonical symplectic form on T ∗Q. The
standard form on R2n is a particular case of this construction.

Example 6.2. (surfaces). A symplectic form on a surface is just an area form.
So a surface admits a symplectic structure if and only if it is orientable.

Example 6.3. (complex projective space).

The complex projective space CPn = (Cn+1 \ 0)/(C \ 0) carries the following
Hermitian metric: The tangent space at [z] = [z0 : · · · : zn] ∈ CPn can be
identified with

T[z]CP
n = {v ∈ C

n+1 | (v, z) = 0},
where (v, w) =

∑

vjw̄j is the standard Hermitian product on Cn+1. Define
the Hermitian metric on CPn as the standard product of the projection onto
T[z]CP

n:

(v, w)[z] :=
(

v − (v, z)

‖z‖2
z, w − (w, z)

‖z‖2
z
)

=
∑

j

vjw̄j −
∑

j,k

z̄jzkvjw̄k
‖z‖2

,

or equivalently,

( , )[z] =
∑

j

dzj ⊗ dz̄j
‖z‖2

−
∑

j,k

z̄jzkdzj ⊗ dz̄k
‖z‖4

.

Define a nondegenerate 2-form on CPn, the Fubini-Study form, by

ωFS := −ℑ( , ).

From

(z̄jzkdzj ∧ dz̄k + z̄kzjdzk ∧ dz̄j)(v, w) = z̄jzk(vjw̄k − wj v̄k) + z̄kzj(vkw̄j − wk v̄j)

= 2iℑ(z̄jzkvjw̄k + z̄kzjvkw̄j)

we see that

(ωFS)[z] =
i

2

(

∑

j

dzj ∧ dz̄j
‖z‖2

−
∑

j,k

z̄jzkdzj ∧ dz̄k
‖z‖4

)

.
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Problem 6.1. Prove that the form ωFS on CPn is closed. Show that ωFS is the
unique symplectic form on CPn which is U(n+ 1)-invariant and whose integral
over a line CP 1 ⊂ CPn equals

∫

CP 1

ωFS = π.

Definition. A map f : (M1, ω1) → (M2, ω2) between symplectic manifolds is
called symplectic if f∗ω2 = ω1. A symplectic diffeomorphism is called symplec-
tomorphism by mathematicians, and canonical transformation by physicists.

Problem 6.2. Prove that a symplectic map is necessarily an immersion.

6.2 Almost complex structures

Definition. An almost complex structure on a manifold is a complex structure
J on the vector bundle TM → M . It is called compatible with a symplectic
form ω if ω(·, J ·) is a Riemannian metric.

In view of Proposition 5.8 there exist compatible almost complex structures on
any symplectic manifold, and they form a contractible space.

An almost complex structure J on M is called integrable if there exist local
complex coordinates φ : M ⊃ U → V ∈ Cn such that Txφ ◦ Jx = Jst ◦ Txφ for
all x ∈ U .

Problem 6.3. Show that for an almost complex structure J the expression

NJ(X,Y ) := [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X,Y ]

for vector fields X,Y defines a skew-symmetric 2-tensor, and NJ = 0 if J is
integrable.

NJ is called the Nijenhuis tensor. The Newlander-Nirenberg Theorem states
that J is integrable if and only if NJ = 0.

Definition. A symplectic manifold (M,ω, J) with an integrable compatible
almost complex structure is called Kähler manifold. Equivalently, a Kähler
manifold is a complex manifold (M,J) with a Hermitian metric ( , ) such that
the Kähler form ω = −ℑ( , ) is a closed 2-form.

The basic example of a Kähler manifold is the complex projective space. Com-
plex submanifolds of Kähler manifolds are again Kähler manifolds. In particular,
all smooth projective varieties are Kähler manifolds.

Example 6.4. A particular case of a Kähler manifold is a Stein manifold (M,J, φ).
This is a complex manifold (M,J) with a function φ : M → R such that

• φ is exhausting, i.e. proper and bounded from below;
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• φ is plurisubharmonic, i.e. −d(dφ ◦ J)(·, J ·) is a Riemannian metric.

Then ωφ := −d(dφ◦J) is a Kähler symplectic form compatible with J . Examples
of Stein manifolds are (Cn, Jst, φ = 1

4‖z‖2) and (T ∗Q, J, φ = 1
2‖p‖2), where ‖p‖

is the norm dual to a Riemannian metric on Q, and J is a suitable complex
structure on T ∗Q. In both examples the induced symplectic form is the standard
symplectic form.

Problem 6.4. Show that a Riemannian metric g on a manifold Q induces a natu-
ral almost complex structure Jg on T ∗Q compatible with ωst, which interchanges
the horizontal and vertical subspaces defined by the Levi-Civita connection. In
general, this almost complex structure is not integrable. Find the conditions on
the metric g such that Jg is integrable.

While cotangent bundles and Kähler manifolds provide obvious examples of
symplectic manifolds, it is not obvious how to go beyond them. The first ex-
ample of a compact symplectic manifold that is not Kähler was presented by
Thurston in 1976 ([20]):

Example 6.5. (Thurston’s manifold). Consider Γ = Z
4 with the noncommuta-

tive group operation

a ∗ b := a+ Lab, a, b ∈ Z
4, Lq =









1 0 0 0
0 1 0 0
0 0 1 a2

0 0 0 1









.

Associativity follows from

LaLb = La+b = La∗b,

and the inverse is given by

a−1 = −L−aa = (−a1,−a2,−a3 + a2a4,−a4)
T .

Γ acts on R4 via
ρa(x) = a+ Lax,

and this action preserves the standard symplectic form ωst = dx1 ∧ dx2 + dx3 ∧
dx4. Since

‖ρa(x) − x‖2 = a2
1 + a2

2 + (a3 + a2x4)
2 + a2

4 ≥ 1

for all 0 6= a ∈ Z4 and x ∈ R4, the action is properly discontinuous. So the
quotient

(M := R
4/Γ, ωst)

is a compact symplectic 4-manifold with fundamental group π1(M) = Γ. Let [ , ]
denote the commutator in Γ and ei the standard basis of Z

4. From [e2, e4] = e3
it easily follows that the commutator subgroup of Γ is

[Γ,Γ] = Ze3.
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So the first homology group of M is

H1(M ; Z) = Γ/[Γ,Γ] ∼= Z
3.

But the odd Betti number of Kähler manifolds are even, so (M,ω) cannot be
Kähler.

6.3 Normal forms

Moser’s trick

The basis of all the normal form theorems is Cartan’s formula

LXα = iXdα+ d iXα

for a vector field X and a k-form α, which is proved in the appendix.

Now suppose we are given k-forms α0, α1 on a manifold M , and we are looking
for a diffeomorphism φ : M → M such that φ∗α1 = α0. Moser’s trick is to
construct φ as the time-1 map of a time-dependent vector field Xt. For this, let
αt be a smooth family of k-forms connecting α0 and α1, and look for a vector
field Xt whose flow φt satisfies

φ∗tαt ≡ α0. (6.1)

The time-1 map φ = φ1 the solves our problem. Now equation 6.1 follows once
its linearized version

0 =
d

dt
φ∗tαt = φ∗t (α̇t + LXt

αt)

holds for every t. Inserting Cartan’s formula, this reduces the problem to the
algebraic problem of finding a vector field Xt that satisfies

α̇t + d iXt
αt + iXt

dαt = 0. (6.2)

Here is a first application of this method:

Theorem 6.6. (Moser [16]). Let Ω0,Ω1 be volume forms on a closed manifold
M . Then there exists a diffeomorphism φ isotopic to the identity such that
φ∗Ω1 = Ω0 if and only if

∫

M

Ω0 =

∫

M

Ω1.

Proof. The “only if” part is obvious. For the “if” part, let Ωt := (1− t)Ω0 +Ω1

be a family of volume forms connecting Ω0 and Ω1. The form Ω̇t = Ω1 − Ω0

satisfies
∫

M
Ω̇t = 0. So its cohomology class vanishes, and therefore Ω̇t = dβ for

some β. We want to solve equation 6.2,

0 = Ω̇t + d iXt
Ωt + iXt

dΩt = d(β + iXt
Ωt).
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Since Ωt is nondegenerate, there exists a unique vector field Xt satisfying β +
iXt

Ωt = 0, and the time-1 map of the flow of Xt is the desired diffeomorphism
φ.

Combined with the classification of surfaces, Moser’s theorem classifies closed
symplectic 2-manifolds:

Corollary 6.7. Two closed 2-dimensional symplectic manifolds are symplecto-
morphic if and only if they have the same genus and total area.

Problem 6.5. Show that the corollary has no analog in higher dimension: Find
two symplectic forms on the same smooth manifold of dimension ≥ 4 which
have the same total volume but are not symplectomorphic.

A second application of Moser’s trick shows that one does not obtain new sym-
plectic forms by deformations which remain in the same cohomology class:

Theorem 6.8 (Moser’s Stability Theorem). Let ωt be a smooth family of co-
homologous symplectic forms on a closed manifold. Then there exists a smooth
family of diffeomorphisms φt such that φ∗tωt = ω0.

Proof. Since the ωt are cohomologous, ω̇t is trivial in cohomology, so for every
t there exists a 1-form βt such that dβt = ω̇t. A priori βt need not depend
smoothly on t. But Hodge theory provides a unique particular choice of βt
which implies smoothness in t: Pick a Riemannian metric on the manifold
M and let d∗ : Ω2(M) → Ω1(M) be the L2-adjoint of d. By Hodge theory,
im(d∗) = ker(d)⊥, so d is an isomorphism from im(d∗) to the exact 2-forms.
The inverse of this isomorphism provides the particular choice for βt.

Now we can solve equation 6.2,

0 = ω̇t + d iXt
ωt + iXt

dωt = d(βt + iXt
ωt)

by solving βt+ iXt
ωt = 0, which has a unique solution Xt by nondegeneracy og

ωt.

Problem 6.6. (cf. [15], Theorem 3.17). Prove that βt can be chosen smoothly in
t by local arguments in coordinate charts, without using Hodge theory.

Weinstein’s neighbourhood theorems

Definition. An immersed submanifold W of a symplectic manifold (M,ω) is
called symplectic (isotropic, coisotropic, Lagrangian) if TxW ⊂ TxM is sym-
plectic (isotropic, coisotropic, Lagrangian) for every x ∈W .

All these types of submanifolds of a symplectic manifold have standard neigh-
bourhoods. The proofs are based on the following
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Lemma 6.9. Let W be a compact submanifold of a manifold M , and let ω0, ω1

be symplectic forms on M which agree at all points of W . Then there exist
tubular neighbourhoods U0, U1 of W and a diffeomorphism φ : U0 → U1 such
that φ|W = 1l and φ∗ω1 = ω0.

Proof. Set ωt := (1− t)ω0 +ω1. Since ωt ≡ ω0 along W , ωt are symplectic forms
on some tubular neighbourhood U of W . By the relative de Rham Theorem,
since ω̇t = ω1−ω0 is closed and vanishes along W , there exists a of 1-form β on
U such that β = 0 along W and dβ = ω̇t on U . As in the proof of Theorem 6.8,
we solve equation 6.2 by setting β + iXt

ωt = 0.

To apply Moser’s trick, a little care is needed because U is noncompact, so the
flow of Xt may not exist until time 1. However, since β = 0 along W , Xt

vanishes along W . Thus there exists a tubular neighbourhood U0 of W such
that the flow φt(x) of Xt exists for all x ∈ U0 and t ∈ [0, 1], and φt(U0) ⊂ U for
all t ∈ [0, 1]. Now φ1 : U0 → U1 := φ1(U0) is the desired diffeomorphism with
φ∗1ω1 = ω0.

Now we are ready for the main result of this section.

Theorem 6.10 (Normal Form Theorem). Let ω0, ω1 be symplectic forms on
a manifold M and W ⊂ M a compact submanifold such that ω0|W = ω1|W .
Suppose that N := ker(ω0|W ) = ker(ω1|W ) has constant rank, and the bundles
(TW⊥ω0/N, ω0, (TW⊥ω1/N, ω1 over W are isomorphic as symplectic vector
bundles. Then there exist tubular neighbourhoods U0, U1 of W and a diffeomor-
phism φ : U0 → U1 such that φ|W = 1l and φ∗ω1 = ω0.

Proof. By Proposition 5.9,

TM |W , ω0) ∼= (TW/N,ω0) ⊕ (TW⊥ω0/N, ω0) ⊕ (N ⊕N∗, ωst),

and similarly for ω1. By the hypotheses, the right-hand sides are isomorphic for
ω0 and ω1. More precisely, there exists an isomorphism

Ψ : (TM |W , ω0) → (TM |W , ω1)

with Ψ|TW = 1l. Extend Ψ to a diffeomorphism ψ : U0 → U1 of tubu-
lar neighbourhoods such that ψ|W = 1l and ψ∗ω1 = ω0 along W , and apply
Lemma 6.9.

All the normal forms are easy corollaries of this theorem.

Corollary 6.11 (Darboux’ Theorem). Let (M,ω) be a manifold with a closed
nondegenerate 2-form. Then every x ∈M possesses a coordinate neighbourhood
U and a coordinate map φ : U → V ⊂ R2n such that φ∗ωst = ω.

Proof. This just follows from the fact that all symplectic vector spaces, hence
all symplectic vector bundles over a point, are isomorphic.
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Corollary 6.12 (Symplectic Neighbourhood Theorem). Let ω0, ω1 be symplec-
tic forms on a manifold M and W ⊂ M a compact submanifold such that
ω0|W = ω1|W is symplectic, and the symplectic normal bundles (TW⊥ω0 , ω0),
(TW⊥ω1 , ω1) over W are isomorphic (as symplectic vector bundles). Then there
exist tubular neighbourhoods U0, U1 of W and a diffeomorphism φ : U0 → U1

such that φ|W = 1l and φ∗ω1 = ω0.

Corollary 6.13 (Isotropic Neighbourhood Theorem). Let ω0, ω1 be symplec-
tic forms on a manifold M and W ⊂ M a compact submanifold such that
ω0|W = ω1|W = 0, and the symplectic normal bundles (TW⊥ω0/TW,ω0),
(TW⊥ω1/TW,ω1) are isomorphic (as symplectic vector bundles). Then there
exist tubular neighbourhoods U0, U1 of W and a diffeomorphism φ : U0 → U1

such that φ|W = 1l and φ∗ω1 = ω0.

Corollary 6.14 (Coisotropic Neighbourhood Theorem). Let ω0, ω1 be sym-
plectic forms on a manifold M and W ⊂ M a compact submanifold such that
ω0|W = ω1|W and W is coisotropic for ω0 and ω1. Then there exist tubu-
lar neighbourhoods U0, U1 of W and a diffeomorphism φ : U0 → U1 such that
φ|W = 1l and φ∗ω1 = ω0.

Corollary 6.15 (Lagrangian Neighbourhood Theorem [23]). Let W ⊂ (M,ω)
be a compact Lagrangian submanifold of a symplectic manifold. Then there exist
tubular neighbourhoods U of the zero section in T ∗W and V of W in M and a
diffeomorphism φ : U → V such that ψ|W is the inclusion and φ∗ω = ωst.

Proof. Since W is Lagrangian, the map v 7→ ivω defines an isomorphism from
the normal bundle TM/TW |W to T ∗W . Extend the inclusion W ⊂ M to a
diffeomorphism ψ : U → V of tubular neighbourhoods of the zero section in
T ∗W and of W in M . Now apply the Coisotropic Neighbourhood Theorem to
the zero section in T ∗W and the symplectic forms ωst and ψ∗ω.



Chapter 7

Constructing symplectic

manifolds

7.1 Blowing up in the complex category

The local model

The following discussion follows [15]. Consider the subset L ⊂ Cn × CPn−1

given by the incidence relation,

C̃
n := L := {(z, l) ∈ C

n × CPn−1 | z ∈ l}
= {

(

(z1 . . . , zn), [w1 : · · · : wn]
)

| zjwk = zkwj for 1 ≤ j, k ≤ n}
with the two obvious projections

β : L→ C
n, (z, l) 7→ z;

π : L→ CPn−1, (z, l) 7→ l.

So π : L→ CPn−1 is just the tautological line bundle. Its zero section

E := L0 := β−1(0) ∼= CPn−1

is called the exceptional divisor. Note that

β : C̃n \ E → C
n \ 0

is a diffeomorphism. So C̃n is obtained from Cn by replacing the origin by the
CPn−1 of tangent lines at the origin. β : C̃n → Cn is called the blow-up of Cn

at the origin.

Lemma 7.1. The normal bundle νE of E in C̃n has first Chern class c1(νE) =
−c, where c ∈ H2(CPn−1; Z) is the canonical generator dual to a hyperplane.
In particular, for n = 2, E has self-intersection number

E ·E = 〈c1(νE), [E]〉 = −1.

57
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Proof. Since the normal bundle to E is just the line bundle π : L→ CPn−1, we
have to show c1(L) = −c. Since c1(L) is determined by its restriction to a line
CP 1 ⊂ CPn−1 and L|CP 1 is the tautological line bundle over CP 1, it suffices to
treat the case n = 2. Then c1(L) = kc, where k is the self-intersection number
of the zero section in L.

Now L does not possess holomorphic sections, But its dual, the canonical line
bundle L∗ → CPn−1, has holomorphic sections s induced by homogeneous linear
polynomials

∑

ajzj on Cn:

s(l) : z 7→
∑

ajzj , l ∈ CPn−1, z ∈ l.

The section s(l) : (z1, z2) 7→ z1 of L∗ → CP 1 has a unique transverse zero
l = [0 : 1]. Since every intersection point of complex submanifolds counts with
+1, this shows c1(L

∗) = c, hence c1(L) = −c.

Lemma 7.2. Every biholomorphic map ψ : C
n → C

n with ψ(0) = 0 lifts
uniquely to a biholomorphic map ψ̃ : C̃n → C̃n with ψ̃(E) = E.

Proof. Define

(̃z, l) :=

{

(

ψ(z), [ψ(z)]
)

if z 6= 0,

(0, T0ψ · l) if z = 0.

To see that this map is continuous, consider a sequence zk → 0 such that
[zk] → l, i.e. vk := zk/|zk| → v 6= 0, [v] = l. Then

lim
ψ(zk)

| zk| = lim
ψ(|zk|vk)

|zk|
= lim

ψ(|zk|v
|zk|

= T0ψ · v 6= 0,

and so [ψ(zn)] = [ψ(zn)/|zn|] → [T0ψ ·v] = T0ψ · l. Similar arguments show that
ψ̃ is smooth and holomorphic.

This lemma allows us to define the blow-up π : M̃ → M of a complex manifold
M at a point p: Choose a holomorphic coordinate chart mapping p to the origin
and blow up the origin in Cn. The lemma ensures that the result in independent
of the coordinate chart.

Lemma 7.3. The blow-up M̃ is oriented diffeomorphic to the connected sum
M#CPn, where CPn is CPn with the opposite orientation.

Proof. Recall the connected sum M1#M2 of two oriented manifolds: Cut out
little balls Bi from Mi and identify collar neighbourhoods of the boundaries of
Mi\Bi via an orientation preserving diffeomorphism that maps the inner sphere
of the collar of M1 to the outer sphere of the collar of M2. This construction is
canonical if the diffeomorphism identifying the collars is required to be isotopic
to the composition of an orientation reversing orthogonal map of the unit sphere
in Rn with a reflection on that sphere.
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Now the connected sum of M with either CPn and CPn replaces a point by
a CPn−1. The only question is which one gives the correct normal bundle of
CPn−1. In the blow-up the normal bundle is the tautological bundle L →
CPn−1. The normal bundle of a hyperplane CPn−1 ⊂ CPn is the canonical
bundle L∗ → CPn−1 (because CPn−1 is the zero set of a section in the canonical
bundle L∗ → CPn). Hence the correct choice is CPn.

Example 7.4. C̃P 2 = CP2#CP 2.

The blow-up C̃P 2 of CP 2 at one point p0 fibres over the exceptional divisor
with fibre CP 1,

CP 1 → C̃P 2 π→ E ∼= CP 1.

The projection π maps each point p 6= p0 of CP 2 to the unique line in CP 2

through p and p0, and is the identity on E. More explicitly, the embedding
C̃n ⊂ C2 × CP 1 extends to an embedding

C̃P 2 = {
(

[z0 : z1 : z2], [w1 : w2]
)

| zzw2 = z2w1} ⊂ CP 2 × CP 1

with canonical projections β : C̃P 2 → CP 2 and π : C̃P 2 → E = {p+ 0}×CP 1.

Now S2-bundles over S2 are classified by

π1

(

Diff+(S2)
)

= π1

(

SO(3)
)

= Z2

according to Smale’s Theorem [19] that the group Diff+(S2) of orientation
preserving diffeomorphisms of S2 deformation retracts onto SO(3). So there is
only the trivial bundle S2 × S2 and one nontrivial bundle. I claim that C̃P 2 is
the nontrivial bundle.

To see this, recall that the intersection form Q : H2(M ; Z) × H2(M ; Z) → Z

of a closed 4-manifold is a diffeomorphism invariant up to Q 7→ AQAT , A ∈
SL(2,Z). In particular, the signature (number of positive minus number of
negative eigenvalues) and the type of Q are diffeomorphism invariants. Here
Q is of even type if 〈x,Qx〉 is even for all x ∈ Z2 and odd otherwise. The
intersection form of S2 × S2 is

Q0 =

(

0 1
1 0

)

in the basis S2 × pt and pt × S2, which has signature zero and even type. The
intersection form of C̃P 2 has intersection form

Q1 =

(

−1 1
1 0

)

in the basis E and the fibre F , or

(

−1 0
0 1

)
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in the basis E and E + F . This form has signature zero and odd type, so C̃P 2

is not diffeomorphic to S2 × S2.

The embedding C̃P 2 ⊂ CP 2 × CP 1 above shows that π : C̃P 2 → CP 1 is the
projectivization of the direct sum of the tautological line bundle L→ CP 1 with
the trivial line bundle C,

C̃P 2 = ¶[L⊕ C] → CP 1.

More generally, we can replace L by other line bundles over CP 1. Since line
bundles over surfaces are classified by their first Chern class, each line bundle
over CP 1 is isomorphic to L⊗d for some d ∈ Z. The zero section E of this
line bundle has self-intersection E · E = 〈c1(Ld), [E]〉 = −d, so ¶[L⊗d ⊕ C] has
intersection form

Qd =

(

−d 1
1 0

)

in the basis E, F . From
(

1 a
0 1

) (

−d 1
1 0

) (

1 0
a 1

)

=

(

−d+ 2a 1
1 0

)

we see that

Qd ∼
{

Q0 for d even,

Q1 for d odd.

This shows the bundle isomorphisms

¶[L⊗d ⊕ C ∼=
{

S2 × S2 for d even,

C̃P 2 for d odd.

Problem 7.1. Find explicit bundle isomorphisms from ¶[L⊗d ⊕ C] to S2 × S2

respectively C̃P 2. Show that ¶[L⊗d⊕C] and ¶[L⊗d′ ⊕C] are biholomorphically
equivalent if and only if d′ = ±d.
Example 7.5. X := XP 2#9CP 2. Let {P0(z) = 0}, {P1(z) = 0} be nonsingular
cubics in CP 2 which intersect transversally in 9 points p1, . . . , p9. Consider the
pencil (family parametrized by CP 1) of cubics

C[a0:a1] = {a0P0 + a1P1 = 0}
passing through p1, . . . p9. This pencil has the following two properties: Any
two cubics in the pencil intersect transversally in p1, . . . , p9; and through every
point of CP 2 \ {p1, . . . , p9} there passes exactly one cubic in the pencil. Hence
we have a map CP 2 \ {p1, . . . , p9} → CP 1 which assign to every z the point
a such that z ∈ Ca. This map does not extend over p1, . . . , p9. But it does
extend to the blow-up X of CP 2 at the points p1, . . . , p9 by sending a tangent
line l at pj to the unique a such that Tpj

Ca = l. Thus we obtain a surjective
holomorphic map

X → CP 1

with generic fibre a 2-torus T 2. Such a complex surface is called an elliptic
surface. X has the following properties:
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(i) A generic fibre has trivial normal bundle.

(ii) There is a finite number of singular fibres.

(iii) X \ T 2 is simply connected for a generic fibre T 2.

The first property is obvious. For the second property note that the second
homotopy group ofthe total space of a torus bundle over S2 injects into π2(S

2) =
Z. Since X is simply connected, H2(X) would be at most one-dimensional if all
fibres were nonsingular. But H2(X) is 10-dimensional, so there must be singular
fibres.

To prove the third property, choose the cubics in such a way that the singular
cubic

C = {z0z2
1 − z3

2 = 0}

occurs in the pencil. The holomorphic map

CP 1 → C, [w0, w1] 7→ [w3
0 : w3

2 : w0w
2
1 ]

is a homeomorphism, so C is homeomorphic to S2, sitting in CP 2 with a cusp
at [1 : 0 : 0]. Now C appears as a singular fibre in the blow-up X . Since C is
simply connected, any loop in a regular fibre of X can be contracted through C.
On the other hand, a meridian of a regular fibre T 2 (a small loop encircling the
fibre in X) can be contracted in X \ T 2 through an exceptional divisor because
the exceptional divisors intersect all fibres. Since π1(X \ T 2) is generated by
loops in the fibres and meridians, this proves π1(X \ T 2) = 0.

7.2 Blowing up in the symplectic category

If (M,J, ω) is a Kähler manifold and β : M̃ → M the blow-up at a point, then
β∗ω is not symplectic on M̃ because it vanishes on the exceptional divisor E.
So as it stands, blow-up does not preserve the symplectic category. There is,
however, an obvious way to fix this: The exceptional divisor E ∼= CPn−1 carries
the Fubini-Study symplectic form ωFS; adding a small multiple of ωFS to β∗ω
should yield a symplectic form on the blow-up. To see that this works, and can
be done in a canonical way, we consider again the local model.

Let L ⊂ Cn × CPn−1 be the tautological line bundle with the projections β :
L → C

n and π : L → CPn−1, and let L0 be its zero section. Identify L \ L0

with Cn \ 0 via β, so the bundle projection becomes π : Cn \ 0 → CPn−1.

For a function φ : Cn → C define dcφ := dφ◦J , where J is the standard complex
structure on C

n. A simple computation using dzj ◦J = idzj and dz̄j ◦J = −idz̄j
shows that

−ddcφ = 2i∂∂̄φ = 2i
∑

j,k

∂2φ

∂zj∂z̄k
dzj ∧ dz̄k.
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Applying this formula we compute for z 6= 0,

−ddc 1
4
|z|2 =

i

2

∑

j

dzj ∧ dz̄j = ωst;

−ddc 1
4

log |z|2 =
i

2

(

∑

j

dzj ∧ dz̄j
‖z‖2

−
∑

j,k

z̄jzkdzj ∧ dz̄k
‖z‖4

)

= π∗ωFS ,

where π : Cn \ 0 → CPn−1 is the projection (see Section 6.1).

Define the 1-form

θ := −dc 1
4

log |z|2,

and the vector fields

X :=
∑

j

(zj
∂

∂zj
+ z̄j

∂

∂z̄j
), JX = i

∑

j

(zj
∂

∂zj
− z̄j

∂

∂z̄j
).

X is the radial vector field and JX the vector field generating the standard
S1-action on C

n. The 1-form θ is invariant under homotheties z 7→ λz, λ ∈ C
∗,

and satisfies θ(X) = 0, θ(JX) = 1
2 . So up to normalization, θ is a connection

1-form on the tautological line bundle π : Cn \ 0 → CPn−1.

In terms of θ,
dθ = π∗ωFS , d(|z|2θ) = ωst.

More generally, for a function ρ : R+ → R,

d
(

ρ(|z|2)θ
)

= dρ ∧ θ + ρπ∗ωFS

is a Kähler form on Cn\0 provided that ρ(0) > 0 and ρ′ > 0. This is true because
dρ∧θ(X, JX) > 0 and π∗ωFS is nondegenerate in the transverse directions. This
form does not extend over the origin. But d(|z|2) ∧ θ = ωst − |z|2π∗ωFS, and
π∗ωFS extends to the blow-up L. Therefore d

(

ρ(|z|2)θ
)

extends to a Kähler
form on L.

Picking a function ρ with ρ(0) > 0, ρ′ > 0 and ρ(|z|2) = |z|2 for |z|2 ≥ δ, we
can put a symplectic form onto the blow-up. But we can do this more precisely.
Let B2n(r) denote the ball of radius r and

L(δ) := {(z, [w]) ∈ L
∣

∣ |z| ≤ δ}.

Lemma 7.6. For each λ > 0,

ωλ := β∗ωst + λ2π∗ωFS

is a Kähler form on L. Moreover, for all δ > 0 we have symplectomorphisms

(

L(δ) \ L0, ωλ

)

∼=
(

B2n(
√

λ2 + δ2) \B2n(λ), ωst

)

.
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Proof. The first statement follows from the discussion above applied to the
function ρ(|z|2) = λ2 + |z|2. For the second statement, consider the function
f : C

n \ 0 → C
n \ 0,

f(z) :=
√

λ2 + |z|2 z|z| .

Since the connection form θ has no radial component, θ and f∗θ equal their
restriction to spheres around the origin. But between such spheres f acts as a
homothety under which θ is invariant, so f∗θ = θ. From here it follows that

f∗ωst = d f∗(|z|2θ) = d(λ2 + |z|2)θ = ωst + λ2ωFS .

Remark. On L \ L0 the form ωλ is given by

ωλ =
i

2
∂∂̄(|z|2 + λ2 log |z|2).

Definition. Let (M,ω) be a symplectic manifold and ψ : B2n(λ) →֒ M a
symplectic embedding of a standard ball. Extend ψ to a symplectic embedding
ψ̃ : B2n(

√
λ2 + δ2) →֒ M for some δ > 0. Define

M̃ := M \ ψ̃
(

B2n(
√

λ2 + δ2)
)

∪ L(δ),

glued via the symplectomorphism of Lemma 7.6, and a symplectic form ω̃ on

M̃ which equals ω on M \ ψ̃
(

B2n(
√
λ2 + δ2)

)

and ωλ on L(δ). (M̃, ω̃) is called

the blow-up of M at the ball ψ
(

B2n(λ)
)

.

We will identify M̃ as a smooth manifold with the blow-up β : M̃ → M of M
at the point ψ(0), picking some integrable complex structure near this point.
This allows us to speak of the projection β (which is not symplectic!) and the
exceptional divisor E, and to identify blow-ups at different balls with the same
center as smooth manifolds.

Lemma 7.7. (i) The blow-up does not depend (up to symplectomorphism)
on δ and the extension ψ̃.

(ii) vol(M̃, ω̃) = vol(M,ω) − vol
(

B2n(λ)
)

.

(iii) [ω̃] = [β∗ω] − πλ2PD[E] ∈ H2(M̃ ; Z).

(iv) If ψ0, ψ1 : B2n(λ) →֒ M are isotopic through symplectic embeddings, then
the corresponding forms ω̃0 and ω̃1 on M̃ are isotopic.

Proof. (i) For any extensions of ψ the forms ω̃ agree on M̃ \ E by Lemma 7.6,
so they agree on M̃ by continuity.

(ii) is clear.
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(iii) The form ω̃ − β∗ω vanishes on M \ ψ̃
(

B2n(
√
λ2 + δ2)

)

. On L(δ) the map

β : M̃ →M is given by a map L(δ) → Cn which equals the symplectomorphism
of Lemma 7.6 near ∂L(δ) and the usual map β : L→ Cn near L0. So ω̃−β∗ω is
a form with compact support on L(δ which equals λ2π∗ωFS near L0. Since the
second cohomology of L with compact support is one-dimensional, [ω̃ − β∗ω] is
a multiple of PD[E]. The factor is determined by evaluating both classes on a
nontrivial relative homology class of (L,L0). A line CP 1 ⊂ L0 provides such
a class. On it PD[E] takes the value −1 and λ2π∗ωFS the value πλ2. Hence
[ω̃ − β∗ω] = −πλ2PD[E].

(iv) Let ψt : B2n(λ) →֒ M be symplectic embeddings. After composing with
symplectomorphisms of M sending ψt(0) to ψ0(0) we may assume ψt(0) =
ψ0(0) for all t. Then as smooth manifolds the blow-up are given by the same
manifold M̃ with a map β : M̃ → M and exceptional divisor E. By (iii) the
symplectic forms ω̃t induced by the embeddings ψt are cohomologous, so by
Moser’s Stability Theorem they are isotopic.

Problem 7.2. Use the compatibility between (ii) and (iii) in the preceding lemma
to derive a formula for vol

(

B2n(λ)
)

, and check that it is correct by direct inte-
gration.

7.3 Fibre connected sum

Connected sum

Let us start out by trying to do connected sums in the symplectic category. Take
two symplectic manifolds and cut out small Darboux balls of the same volume.
The boundary spheres have tubular neighbourhoods symplectomorphic to the
annulus

A2n(δ, ε) := B2n(δ) \B2n(ε)

for some ε < δ. All we need for the connected sum is a symplectomorphism of
this annulus that interchanges the boundary components. Here is the bad news:

Lemma 7.8. There exists a symplectomorphism of A2n(δ, ε) that interchanges
the boundary components if and only if n = 1.

Proof. Consider a compact hypersurface S in R2n with the standard symplectic
form ω = ωst. Then ω|S = dλ for some 1-form λ on S.

Claim: For n ≥ 2,
∫

S
λ ∧ ωn−1 is independent of the choice of λ.

Indeed, suppose dλ = dµ = ω|S . Then

∫

S

(λ − µ) ∧ ωn−1 =

∫

S

d
(

(λ− µ) ∧ λ ∧ ω2n−2
)

= 0.

Note that the statement is false for n = 1.
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Let us call S convex (concave) if there exists a λ on S such that dλ = ω|S
and λ ∧ ωn−1|S is a positive (negative) volume form on S with the natural
orientation. For n ≥ 2, if S is convex,

∫

S
λ ∧ ωn−1 > 0 for all λ with dλ = ω|S ,

so S is not concave. For n = 1 every hypersurface is both convex and concave.

Now suppose φ : A2n(δ, ε) → A2n(δ, ε) is symplectic and interchanges the bound-
ary components. The sphere S := S2n−1(δ) is convex. Choose a λ on S with
dλ = ω|S and λ∧ωn−1|S positive. Then λ′ := φ∗λ on S′ := φ−1(S) = S2n−1(ε)
satisfies dλ′ = ω|S′ , and λ′ ∧ ωn−1|S′ is negative if S′ is oriented as a hypersur-
face in R

2n. Thus S′ is concave. But S′ is also convex, which is impossible for
n ≥ 2.

For n = 1, the unique S1-equivariant symplectomorphism of the open unit ball
without zero that interchanges the boundary components is

φ(z) =

(

1

|z| − 1

)

z̄.

Fibre connected sum

Despite the preceding lemma, the connected sum construction can be used for
higher dimensions by applying it to the fibres of the normal bundle of a codimen-
sion 2 submanifold. This fibre connected sum construction was first observed by
Gromov [9] and further developed by Gompf [8].

Consider an oriented 2-plane bundle π : E → N over a symplectic manifold
(N,ωN ). Pick a Hermitian metric with norm r = |z| in the fibres, and a con-
nection 1-form θ on E \N , where N is identified with the zero section. Then

η := d(
1

2
r2θ)

is an exact 2-form on E which restricts to the standard area form on each fibre,
and

π∗ωN + tη

is a symplectic form on E for t > 0 sufficiently small.

The diffeomorphism

ι(z) =

(

1

|z| − 1

)

z

of the open unit ball without zero in R2 interchanges the boundary components
and satisfies ι∗ωst = −ωst. (ι is the conjugate of the map φ in the previous
proof). It induces a diffeomorphism of the open unit disk bundle without the
zero section, ι : E1 \N → E1 \N , satisfying

ι∗(π∗ωN + tη) = π∗ωN − tη.
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Now consider two disjoint symplectic embeddings

j1, j2 : (N2n−2 →֒ (M2n, ωM )

whose normal bundles are opposite as oriented 2-plane bundles,

ν1 ∼= −ν2.

Let ψ : ν1 → −ν2 be a symplectic bundle isomorphism, so

ψ∗(π∗ωN + tη2) = π∗ωN − tη1.

By the Symplectic Neighbourhood Theorem, a neighbourhood V1 of j1(N) is
symplectomorphic to the unit disk bundle,

(V1, ωM ) ∼= (ν1
1 , π

∗
1ωN + tη1),

for t sufficiently small, and similarly for j2(N). Under these identifications,

φ := ι ◦ ψ : (V1 − j1(N), ωM ) → (V2 − j2(N), ωM )

is a symplectomorphism that identifies the inner boundary to the outer one.

Definition. The manifold

#ψM := M − j1(N) − j2(N)
/

V1 ∼
φ
V2

obtained by cutting out j1(N) and (j2(N) and gluing the collars via φ is called
the fibre connected self-sum of M . If M = M1 ∐M2 is a disjoint union and
ji : N →֒Mi, then

M1#ψM2 = #ψ(M1 ∐M2)

is called the fibre connected sum of M1 with M2.

The discussion above implies

Proposition 7.9. The fibre connected (self-)sum carries a symplectic structure
which agrees with ωM outside a neighbourhood of j1(N) ∪ j2(N).

Remark. Gompf [8] actually showed that the symplectic structure on #ψM is
canonical. But we do not need this for the applications below.

Applications

The main result of this chapter is

Theorem 7.10 (Gompf [8]). Every finitely presented group is the fundamental
group of a closed symplectic 4-manifold.
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Proof. 1. Let
< g1, . . . , gk | r1, . . . , rl >

be a presentation of G with generators gi and relations ri. Let F be a closed
surface of genus k and α1, . . . , αk, β1, . . . , βk embedded oriented loops on F
whose intersection numbers satisfy

αi · βj = δij .

Note that
π1(F )

/

< β1, . . . , βk >

is the free group generated by α1, . . . , αk. Let γi, i = 1, . . . , l, be immersed
oriented loops on F representing the relations ri (with gj replaced by αj). Set
γl+i := βi for i = 1, . . . , k. Then

π1(F )
/

< γ1, . . . , γk+l >∼= G.

2. We wish to construct a closed 1-form ρ on F such that ρ|γi
is a volume form

for all i. This is not possible in general due to homological reasons, but as we
will see, it becomes possible after attaching sufficiently many handles to F .

Pick two distinct points x, y ∈ S1 and the corresponding loops

α = S1 × x, β = x× S1, γ = y × S1

on the torus T 2 = S1 × S1. Pick a disk D ⊂ T 2 which is disjoint from α and β
and intersects γ in a single arc (see Figure).

Make γ1, . . . , γk+l intersect transversally in double points and consider the ori-
ented graph

Γ := ∪γi.
For each edge e of Γ take the connected sum of F with T 2 at a disk on e such
that e gets summed with γ. Add α and β to the collection of the γ)i. This
yields a new surface, still called F , of higher genus with a collection of immersed
loops γ1, . . . , γ)m such that still

π1(F )
/

< γ1, . . . , γm >∼= G,

and each edge of Γ = ∪γi has a segment that equals α, β or γ in some T 2.

3. Now there exists a closed 1-form ρ0 on T 2 satisfying ρ0 = 0 onD and
∫

ρ0 > 0
over α, β and γ. (Take the form δ dual to α + β, δ = df on D, extend f , and
set ρ) := δ − df). Let ρ∗ be the closed 1-form on F whichequals ρ0 on T 2 −D
and zero otherwise. It satisfies

∫

e

ρ∗ > 0
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for each oriented edge e of Γ. So for i = 1, . . . ,m we find volume forms θi on
(the domain of the loop) γi such that

∫

e

θi =

∫

e

ρ∗

for each edge e of Γ in γi. This implies

θi − ρ∗|γi
= dfi

for a function fi : γi → R that vanishes at each vertex of Γ on γi. Extend the
function f1 + · · ·+fm on Γ to a smooth function f on F (which is possible since
the fi vanish at the vertices). Now

ρ := ρ∗ + df

is a the desired closed 1-form on F such that ρ|γi
= θi is a volume form on each

γi, i = 1, . . . ,m.

4. Now consider F×T 2 with a product symplectic form ω and projections π1, π2

onto the factors. For i = 1, . . . ,m,

Ti := γi × α

is an immersed Lagrangian torus in F × T 2. We also have a closed 2-form

η := π∗
1ρ ∧ π∗

2θ

on F × T 2, where θ is the pullback of a volume form on α to T 2, and ρ is the
1-form on F constructed in Steps 3 and 4. By construction, η|Ti

is symplectic
for all i. Thus for t > 0 sufficiently small,

ω′ := ω + tη

is symplectic on F ×T 2, on Ti, and on z×T 2, where z is any point in F −∪γi.
Next write the symplectic manifold as

F × T 2 = (F × β) × α.

Perturb the loops γi in the 3-manifold F × β to disjointly embedded loops γ′i.
The resulting tori

T ′
i := γ′i × α

are disjointly embedded in F × T 2, and they remain symplectic for small per-
turbations. Moreover, they remain disjoint from z × T 2.

Note that the normal bundle of T ′
i is the pullback of the normal bundle of γ′i in

F × β, so it is trivial.

5. Let X be the rational elliptic surface from Example 7.5. A generic fibre
N ⊂ X is a symplectically embedded 2-torus with trivial normal bundle. Use
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the fibre connected sum to attach a copy of X to F × T 2 along each T ′
i and

along z × T 2 (identifying T ′
i with N after rescaling the symplectic form on X).

Denote the resulting symplectic manifold by M .

we have shown in Example 7.5 thatX−N is simply connected. Therefore π1(T
′
i )

and π1(z×T 2) get killed in π1(M). In particular, the relations [γ′i] ∈ π1(T
′
i ) die

in π1(M), and

π1(M) = π1(F )
/

< γ1, . . . , γm >∼= G.

Example 7.11. (Gompf). CP 2#CP 2 contains two disjoint symplectic spheres:
the exceptional divisor E, and the lift H of a line in CP 2 not passing through
the blow-up point. They have self-intersections

E · E = −1, H ·H = +1.

If there
∫

E
ω =

∫

H
ω, then we could form the fibre connected self-sum identifying

E and H to obtain a symplectic manifold diffeomorphic to S1 × S3. Since this
is impossible, we have shown:

There exists no symplectic form on CP 2#CP 2 for which E andH are symplectic
of the same area.

Problem 7.3. Suppose (M2n, ω) has a symplectic submanifold E ∼= CPn−1

whose normal bundle is the tautological bundle over CPn−1. Show that the
fibre connected sum M#ψCPn identifying E with a hyperplane in CPn equals
the blow-down of M along E.

Problem 7.4. (Gompf). Consider the symplectic manifolds with product struc-
tures,

M1 = T 2 × S2 ⊃ T 2 × z, M2 = T 2 × T 2 ⊃ T 2 × w.

Show that M1#ψM2 identifying T 2 × z and T 2 × w, with a suitable twisted
framing ψ, is the Thurston manifold of Example 6.5.
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Chapter 8

Hamiltonian systems on

symplectic manifolds

8.1 Basic properties

Let (M,ω) be a symplectic manifold and H : R ×M → R a time-dependent
Hamiltonian.

Definition. The Hamiltonian vector field XH is the unique vector field satis-
fying

dHt = iXH
ω, where Ht = H(t, ·).

The Hamiltonian system

ẋ(t) = XH

(

t, x(t)
)

, x : R →M

defines (at least locally) the Hamiltonian flow (or phase flow) φHt : M →M .

In Darboux coordinates (qi, pi), ω =
∑

dqi ∧ dpi, the Hamiltonian vector field
is given by

XH =
∑

(∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)

,

and the Hamiltonian system ẋ = XH(t, x), x = (q, p), is equivalent to Hamilton’s
equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

The Hamiltonian flow obeys two fundamental conservation laws:

Proposition 8.1. (i) The Hamiltonian flow (of a time-dependent Hamilto-
nian) preserves the symplectic form ω.

71
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(ii) If H is time-independent the Hamiltonian flow preserves the Hamiltonian
H (conservation of energy).

Proof. 1. By Cartan’s formula and since ω is closed,

LXH
ω = d iXH

ω + iXH
dω = d(dHt) = 0.

Thus d
dt

(φHt )∗ω = (φHt )∗LXH
ω = 0, and therefore (φHt )∗ω = ω.

2. The total time derivative of H equals

dH

dt
=

d

dt
H

(

t, x(t)
)

=
∂H

∂t
+ dHt · ẋ =

∂H

∂t
+ ω(XH , ẋ) =

∂H

∂t
,

which vanishes if H is time-independent.

Remark. The preceding prove shows that for a time-dependent Hamiltonian,

dH

dt
=
∂H

∂t
.

The conservation of ω has two important consequences. The first one is geo-
metric: Hamiltonian flows provide a wealth of symplectomorphisms.

Definition. A diffeomorphism φ : M → M is called a compactly supported
Hamiltonian diffeomorphism if φ = φH1 for some compactly supported time-
dependent Hamiltonian H .

Problem 8.1. Prove that the compactly supported Hamiltonian diffeomorphisms
form a group under composition. Prove that this group acts transitively on any
connected symplectic manifold.

The second consequence is dynamical:

Proposition 8.2 (Liouville’s Theorem). The Hamiltonian flow preserves the
canonical volume form on M ,

vol =
ωn

n!
.

So vol
(

φHt (A)
)

= vol(A) for every Borel measurable set A ⊂ M . In physicists’
language, “the phase flow is incompressible”. This property plays a crucial
role in statistical mechanics. Its importance for classical mechanics rest on the
following result:

Proposition 8.3 (Poincaré Recurrence Theorem). Let (X,µ) be a measure
space with µ(X) < ∞, and f : X → X a measure preserving bijection. Then
for every A ⊂ X with µ(A) > 0 there exist infinitely many N ∈ N such that
fN(A) ∩A 6= ∅.

Proof. If all fN (A), N ∈ N, were disjoint then µ(X) ≥ µ(A) + µ
(

f(A)
)

+ · · · =
∞. This proves existence of one N such that fN(A) ∩A 6= ∅. The existence of
infinitely many follows by repeating this argument.
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Since open sets in R2n have positive volume, the Poincaré Recurrence Theorem
implies:

Corollary 8.4. If the Hamiltonian flow remains in a compact region then it is
recurrent, i.e. for every open set U there exist infinitely many T > 0 such that
φHT (U) ∩ U 6= ∅.
Problem 8.2. (cf. [18]). Let (Σ, ω) be a 2-dimensional compact connected sym-
plectic manifold and H : Σ → R a nonconstant function. Let Per ⊂ (0,∞) be
the set of minimal periods of nonconstant periodic orbits of ẋ = XH(x).

(i) Prove that Per is nonempty and connected.

(ii) Find examples where Per is: (i) a point, (ii) an interval [a, b], (iii) an
interval (a,∞).

(iii) Prove: If Per is bounded from above then Σ ∼= S2,

(iv) Prove that Per always contains the value area(Σ)/(maxH − minH).

Solution. First study the periods of periodic orbits in the vicinity of a critical
point. This can be done in arbitrary dimension 2n. So let H : R2n → R

be a Hamiltonian with a critical point at the origin. Consider a nonconstant
T -periodic orbit x of ẋ = XH(x).

Claim 1. If 0 is a degenerate critical point then for every T0 there exists a δ
such that if x remains in the δ-ball around 0 then T ≥ T0.

Proof. Recall that a 2π-periodic map γ : R/2πZ → Rm with
∫ 2π

0 γ(t)dt = 0
satisfies Wirtinger’s inequality

∫ 2π

0

|γ|2dt ≤
∫ 2π

0

|γ̇|2dt.

By rescaling this implies

∫ T

0

|γ|2dt ≤
(

T

2π

)2 ∫ T

0

|γ̇|2dt

for every T -periodic map γ : R/TZ → Rm with
∫ T

0
γ(t)dt = 0. Apply this to

the map γ := ẋ : R/TZ → R2n. Since 0 is a critical point, for every ε there
exists a δ such that |DXH(x)| < ε for |x| < δ. Hence

∫ T

0

|γ̇|2dt =

∫ T

0

|DXH(x)γ|2dt ≤ ε2
∫ T

0

|γ|2dt ≤
(

εT

2π

)2 ∫ T

0

|γ̇|2dt.

Since γ̇ does not vanish identically this implies T ≥ 2π/ε, which proves Claim
1.

Claim 2. For every T0 and ε there exists a δ < ε such that if x meets the δ-ball
but does not remain in the ε-ball then T ≥ T0.
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Proof. On the ε-ball we have |XH(x)| ≤ c|x| for some constant c. Consider
times t0 < t1 with |x(t0)| = ε/2, |x(t1)| = ε and |x(t)| ≤ ε for t ∈ [t0, t1]. Then

ε/2 = |x(t1)| − |x(t0)| ≤ |x(t1) − x(t0)| ≤
∫ t1

t0

|ẋ|dt ≤
∫ t1

t0

c|x|dt ≤ cε(t1 − t0),

thus t1 − t0 ≥ 1/2c. Note that this estimate remains the same if we make ε
smaller. Using the estimate with ε replaced by ε/2, ε/4, . . . we see that T must
arbitrarily large, and Claim 2 is proved.

Claim 3. Suppose n = 1 and 0 ∈ R2 is a nondegenerate local maximum or
minimum. Then there exist δ and c such that if x remains in the δ-ball then
1/c ≤ T ≤ c.

Proof. Since the periodic orbits are close to ellipses for δ small, there exists a
constant c such that every periodic orbit in the δ-ball satisfies

max
t

|x(t)|/c ≤ l(x) ≤ cmin
t

|x(t)|.

Here l(x) =
∫ T

)
|ẋ|dt denotes the length of x. Moreover, we may assume |x|/c ≤

|XH(x)| ≤ c|x| for |x| ≤ δ. Then

l(x) ≤
∫ T

0

c|x|dt ≤ cT max
t

|x(t)| ≤ c2T l(x),

l(x) ≥
∫ T

0

|x|
c
dt ≥ T

c
min
t

|x(t)| ≥ T

c2
l(x).

Hence 1/c2 ≤ T ≤ c2, and Claim 3 is proved.

Now consider the Hamiltonian system on the surface (Σ, ω). Let (xs)s∈(0,1) be
an embedded family of nonconstant periodic orbits of periods Ts. Suppose the
family is maximal in the sense that the closure of the family in Σ contains critcal
points p0 at s = 0 and p1 at s = 1. Call such a family a regular family. Call
the end s = 0 of type 1 if the critical point p0 is either degenerate or hyperbolic
(nondegenerate of index 1). Then it follows from Claims 1 and 2 that Ts → ∞
as s→ 0.

Call the end s = 0 of type 2 if it is not of type 1. Then p0 is an elliptic critical
point (a nondegenerate maximum or minimum). It follows from Claim 3 that
Ts → a, 0 < a <∞, as s→ 0.

Let I := {Ts | s ∈ (0, 1)} ⊂ (0,∞). Note that I is connected. The discussion
above gives us all possibilities for I.

• If both ends are of type 1 then I = [a,∞) for some 0 < a <∞.

• If one end is of type 1 and the other one of type 2 then I = [a,∞) or
I = (a,∞) for some 0 < a <∞.
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• If both ends are of type 2 then I = {a}, I = [a, b], I = [a, b), I = (a, b] or
I = (a, b) for some 0 < a < b <∞.

Now (a) follows by considering connected components ofH−1((a, b)) for intervals
(a, b) consisting of regular values.

For (b) observe that all possible forms of Per can be realized by a Hamiltonian
on S2 with only 2 critical points, the maximum and minimum. In particular,
Per = {2π} for the height function on the unit sphere S2 ⊂ R3 with the
standard area form.

(c) If Per is bounded from above then for every regular family both ends must
be of type 2. Hence all critical points of H are nondegenerate of index 0 or
2. Since Σ is connected, this implies that H has only 2 critical points, the
maximum and minimum. This can only happen for Σ ∼= S2.

(d) Consider a regular family (xh)h∈(h0,h1), parametrized such that H(xh) = h,
with periods Th. Let R := {(t, h) ∈ R

2 | 0 < t < Th, h0 < h < h1} and define
φ : R → Σ, φ(t, h) := xh(t). Then

1 ≡ ∂(H ◦ φ)

∂s
= dH(

∂φ

∂s
) = ω(XH ,

∂φ

∂s
) = ω(

∂φ

∂t
,
∂φ

∂s
).

So the area of φ(R) is given by

∫

R

φ∗ω =

∫ h1

h0

∫ Th

0

dt dh =

∫ h1

h0

Th dh.

Choose for each interval of regular values of H such a regular family. This yields
a measurable function h 7→ Th on (minH,maxH). Let A be the sum of the
areas of all the regular families. Then h 7→ Th is integrable and

∫ maxH

minH

Th ds = A ≤ area(Σ).

Now distinguish 2 cases. If Per = [a,∞) or (a,∞) the statement follows from
the inequality

min
h
Th(maxH − minH) ≤

∫ maxH

minH

Th ds ≤ area(Σ).

If Per is a finite interval then H has only 2 critical points, its maximum and
minimum. Hence h 7→ Th extends to a continuous map on [minH,maxH ]
and A = area(Σ). Now by the intermediate value theorem, there exists a
h ∈ [minH,maxH ] with Th(maxH − minH) = area(Σ).

Problem 8.3. Let S1 = R/Z be the unit circle.

(i) Show that every orientation preserving diffeomorphism of S1 is the time-
one map of a time-dependent vector field.
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(ii) Find an orientation preserving diffeomorphism of S1 which is not the time-
one map of any time-independent vector field.

Solution. (i) Lift φ̄ : S1 → S1 to φ : R → R. Then φ̄ is an orientation preserving
diffeomorphism iff φ′ > 0 and φ(x+1) = φ(x)+1. Now φt(x) := (1− t)x+ tφ(x)
satisfies φ′t > 0 and φt(x + 1) = φt(x) + 1, hence it descends to an isotopy
φ̄t : S1 → S1 connecting φ̄ to the identity. Its t-derivative is the desired time-
dependent vector field.

(ii) Consider an orientation preserving diffeomorphism φ : S1 → S1 without
fixed points. Suppose that φ = φ1 is the time-one map of a time-independent
vector field f : S1 → R. Since φ has no fixed points, we must have f 6= 0, say
f > 0 everywhere.

Claim: If φ2 has a fixed point then φ2 is the identity.

To see this, consider the flow φt of f , and let φ2(x0) = x0. By the group
property of the flow (here we use that f is time-independent),

φ2 ◦ φt(x0) = φ2+t(x0) = φt ◦ φ2(x0) = φt(x0),

so every φt(x0) is a fixed point of φ2. But as t increases, φt(x0) runs around
the whole circle, hence φ2 is the identity.

In view of this claim, it suffices to find an orientation preserving diffeomorphism
φ without fixed points such that φ2 has a fixed point but is not the identity. Such
φ’s clearly exist. Here is an explicit example: Let f(t, x) be a time-dependent
vector field on S1 with the following properties: f(t, x) = 1/2 for 0 ≤ t ≤ 1/4
and 0 ≤ x ≤ 3/4, and for 1/4 ≤ t ≤ 1 and all x; f(t, x) > 1/2 for 0 < t < 1/4
and 3/4 < x < 1. Its time-one map φ maps 0 → 1/2, 1/4 → 3/4, 1/2 → 1 ≡ 0
and 3/4 → p > 1/4. Thus φ2(0) = 0 but φ2(1/4) = p > 1/4, so φ2 is not the
identity.

Problem 8.4. Use the preceding problem to construct a Hamiltonian diffeo-
morphism of the 2-torus which is not the time-one map of a time-independent
Hamiltonian.

8.2 Variational principles

Hamilton’s principle

Consider an exact symplectic manifold (M,ω = dλ) with a time-dependent
Hamiltonian H . Define the Hamiltonian action of a path x : [a, b] →M by

AH(x) :=

∫ b

a

(

−x∗λ−H(t, x)dt
)

.

Let L0, L1 ⊂M be submanifolds with λ|Li
= 0 for i = 1, 2.
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Proposition 8.5 (Hamilton’s principle). For a path x : [a, b] →M with x(a) ∈
L0, x(b) ∈ L1 the following are equivalent:

(i) x is an extremal of AH among variations with endpoints on L0 and L1.

(ii) x is an extremal of AH among variations with fixed endpoints.

(iii) x is a solution of ẋ = XH(t, x).

Proof. Let ξ be a vector field along x with ξ(a) ∈ TL0 and ξ(b) ∈ TL1. Let
φ : [0, ε] × [a, b] →M satisfy

φ(0, t) = x(t), φ(s, a) ∈ L0, φ(s, b) ∈ L1,
∂φ

∂s

∣

∣

∣

s=0
= ξ.

By Stokes’ Theorem and since λ|Li
= 0,

∫

[0,ε]×[a,b]

φ∗dλ =

∫

ε

×[a, b]φ∗λ−
∫

0

×[a, b]φ∗λ.

Dividing by ε and letting ε → 0, the right-hand side tends to the derivative of
∫

x
λ in the direction ξ, and the left-hand side converges to

∫ b

a
dλ(ξ, ẋ)dt. From

this it follows that

dAH(x) · ξ =

∫ b

a

(

−dλ(ξ, ẋ) − dH(t, x) · ξ
)

dt

=

∫ b

a

ω
(

ẋ−XH(t, x), ξ
)

dt,

which implies the proposition.

For a cotangent bundle M = T ∗Q, λ = −p dq and Li = T ∗
qi
Q the fibres at

points q0, q1, this proposition recovers Hamilton’s extended variational principle
of Proposition 3.2.

Remark. Versions of Hamilton’s principle hold for periodic, homoclinic or hete-
roclinic orbits. This variational principle has turned out to be a powerful tool to
prove existence of such special solutions for very general Hamiltonian systems.
For example, for a large class of 1-periodic Hamiltonian systems on a cotangent
bundle over a compact manifold (including all natural Hamiltonians), there exist
infinitely many 1-periodic solutions [5]. On a compact symplectic manifold, the
number of 1-periodic solutions is estimated below by topology of the manifold
(sum of Betti numbers, cuplength). This is the famous Arnold conjecture that
led to the invention of Floer homology (see [7]).
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Maupertuis’ principle

Consider now a time-independent Hamiltonian on a symplectic manifold (M,ω).
By conservation of energy, each regular level set S := H−1(c) is invariant under
the Hamiltonian flow. The flow on S can be described geometrically as follows:
The hypersurface S carries the characteristic line field

ker(ω|S) = (TS)⊥ω ⊂ TS.

Integral curves of this line field are called characteristics. They form a 1-
dimensional foliation of S called the characteristic foliation. Since ω(XH , v) =
dH(v) = 0 for every v ∈ TS, the Hamiltonian vector field XH spans the char-
acteristic line field. So we see:

Proposition 8.6. The orbits of the Hamiltonian flow on a regular energy sur-
face S = H−1(c) are the characteristics of S. So if H̃ is another Hamiltonian
with S as a regular energy surface, then the orbits of H̃ on S differ from those
of H only in the parametrization.

If ω|S = dλ is exact we can give a variational characterization of characteristics
on S. For an (unparametrized) path γ on S define its action

A(γ) := −
∫

γ

λ.

Let L0, L1 ⊂ S be submanifolds with λ|Li
= 0. Then the variation of a path γ

on S from L0 to L1 among such paths is given by

dA(γ) · ξ = −
∫

γ

iξω,

and we conclude:

Proposition 8.7. For an unparametrized path γ on S from L0 to L1 the fol-
lowing are equivalent:

(i) γ is an extremal of A among variations with endpoints on L0 and L1.

(ii) γ is an extremal of A among variations with fixed endpoints.

(iii) γ is a characteristic on S.

Now consider a cotangent bundleM = T ∗Q with a fibrewise convex Hamiltonian
H and its Legendre transform L. Fix a regular energy surface H−1(E). Let
Li = T ∗

qi
Q be the fibres at fixed points q0, q1 ∈ Q.

A path
(

q(τ), p(τ)
)

in T ∗Q is extremal for the Hamiltonian action among vari-

ations on each fibre if and only if p = ∂L
∂q̇

, and solutions of the Hamiltonian

systems are extremals of the Hamiltonian action among such paths (q, p = ∂L
∂q̇

).
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Conversely, let q be an unparametrized path in Q from q0 to q1. For each
parametrization consider the path (q, p = ∂L

∂q̇
) in T ∗Q. Up to a time shift,

there exists a unique parametrization of q such that the path (q, p = ∂L
∂q̇

) lies

on H−1(E). Define the reduced action of q to be

AE(q) :=

∫

q

p dq =

∫ b

a

〈∂L
∂q̇
, q̇〉dτ

with this parametrization. Then the preceding proposition implies:

Corollary 8.8 (Maupertuis’ principle). A path from q0 to q1, parametrized such
that H(q, ∂L

∂q̇
) ≡ E, is a solution of the Hamiltonian system if and only if it is

an extremal for the reduced action AE among all paths from q0 to q1.

Now specialize to a natural Hamiltonian H = 1
2‖p‖2 + V (q) on T ∗Q. Assume

that V is bounded from above, so that H−1(E) is a regular level set for every
E > supV . We can rewrite this level set as

{H = E} =
{ ‖p‖2

2
(

E − V (q)
) = 1

}

.

So by Proposition 8.6, solutions of the Hamiltonian system for H of energy E

are, up to parametrization, solutions of the Hamiltonian system for ‖p‖2

2
(

E−V (q)
)

of energy 1. But ‖p‖2

(

E−V (q)
) is just a metric on T ∗

qQ, dual to the Riemannian

metric
(

E − V (q)
)

‖q̇‖2 on TqQ. So we have shown:

Corollary 8.9. The solutions of the natural Hamiltonian system H = 1
2‖p‖2 +

V (q) of energy E > supV are, up to parametrization, precisely the geodesics in
the Jacobi metric

(

E − V (q)
)

‖q̇‖2 on Q.

This corollary shows that time-independent natural Hamiltonian systems behave
for high energy as geodesic flows. So all general properties of geodesic flows
carry over to natural Hamiltonian systems. For example, as a consequence of
the Lusternik-Fet Theorem, if Q is compact then for every energy E > supV
there exists a periodic orbit of the Hamiltonian system of energy E.

Problem 8.5. Use the Jacobi metric to prove the following special case of a
theorem of Bolotin: Let V : Rn → R and E satisfy

〈q,∇V (q)〉 > 2
(

V (q) − E
)

for all q with V (q) ≤ E.

Then there exists a libration motion of energy E, i.e. a solution of q̈ = −∇V (q)
oscillating between two points on the level surface {V = E}.
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Chapter 9

Poisson manifolds

9.1 The Poisson bracket on a symplectic mani-

fold

Let (M,ω) be a symplectic manifold. The time evolution of functions under
Hamiltonian flows can be described very elegantly by the Poisson brackets:

Definition. The Poisson bracket of F,G ∈ Ω0(M) is

{F,G} := ω(XF , XG) = XG · F = −XF ·G.

In Darboux coordinates, XG =
∑

( ∂G
∂pi

∂
∂qi

− ∂G
∂qi

∂
∂pi

), hence

{F,G} = XG · F =
∑

(∂F

∂qi

∂G

∂pi
− ∂G

∂qi

∂F

∂pi

)

.

For example,

{qi, qj} = {pi, pj} = 0,

{qi, pj} = δij .

Lemma 9.1. The Poisson bracket is invariant under symplectomorphisms φ,

{φ∗F, φ∗G} = φ∗{F,G}.

Proof. Using Xφ∗F = φ∗XF ,

{φ∗F, φ∗G} = ω(Xφ∗F , Xφ∗G) = ω(φ∗XF , φ
∗XG)

= φ∗
(

ω(XF , XG)
)

= φ∗{F,G}.
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The importance of the Poisson bracket lies in the following observation:

Lemma 9.2. The time evolution of a function under the Hamiltonian flow of
a time-independent Hamiltonian H is given by

d

dt
(F ◦ φHt ) = {F ◦ φHt , H}.

Proof. Using Lemma 9.1, this follows from the definitions,

d

dt
(F ◦ φHt ) = (φHt )∗(XH · F ) = (φHt )∗{F,H} = {F ◦ φHt , H ◦ φHt },

and H ◦ φHt = H .

For example, conservation of energy reads as {H,H} = 0, and constants of the
motions are precisely the functions F that Poisson commute with H , {F,H} =
0.

The Poisson bracket is obviously skew-symmetric, {F,G} = −{G,F}, and it
has the derivation property, {FG,H} = F{G,H} + G{F,H}. A less obvious
property follows from the closedness of ω:

Lemma 9.3.

dω(XF , XG, XH) = −
(

{{F,G}, H} + {{G,H}, F}+ {{H,F}, G}
)

.

Proof. We use the formula

dω(XF , XG, XH) = XF · ω(XG, XH) − ω([XF , XG], XH) + cyclic.

Evaluate the terms on the right-hand side:

XF · ω(XG, XH) = {{G,H}, F},

−ω([XF , XG], XH) = [XF , XG] ·H = XF · {H,G} −XG · {H,F}
= {{H,G}, F} − {{H,F}, G} = −{{G,H}, F} − {{H,F}, G}

Adding up all cyclic permutations yields the desired identity.

So dω = 0 is equivalent to the Jacobi identity

{{F,G}, H} + {{G,H}, F}+ {{H,F}, G} = 0.
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9.2 Poisson manifolds

Definition. A Poisson manifold is a manifold M with an R-bilinear operation
{ , } : Ω0(M) × Ω0(M) → Ω0(M) satisfying

(i) (skew-symmetry) {F,G} = −{G,F};

(ii) (derivation property) {FG,H} = F{G,H} +G{F,H};

(iii) (Jacobi identity) {{F,G}, H} + {{G,H}, F}+ {{H,F}, G} = 0.

A map φ between Poisson manifolds is called Poisson map if {φ∗F, φ∗G} =
φ∗{F,G} for all functions F,G.

We have seen in the previous section that every symplectic manifold carries a
Poisson structure. But not every Poisson structure is symplectic:

Problem 9.1. Prove that the rigid body bracket

{F,G}(ξ) := 〈ξ,∇ξF ×∇ξG〉

for ξ ∈ R3, F,G ∈ Ω0(R3) defines a Poisson structure on R3. Hint: The Jacobi
identity follows from the Jacobi identity for the cross product.

In view of the derivation property, the value of {F,G} at a point depends only
on the differentials of F and G at this point. So a Poisson structure defines a
skew-symmetric 2-tensor field B ∈ Ω2(M), called the Poisson tensor, via

Bx(dxF, dxG) := {F,G}.

A diffeomorphism ψ between manifolds with Poisson tensors B1, B2 is a Poisson
map if and only if ψ∗B1 = B2.

Problem 9.2. (cf. [14]). Prove that there exists a unique bilinear operation
[ , ] : Ω∗(M)×Ω∗(M) → Ω∗(M), called the Schouten bracket, with the following
properties:

(i) deg[A,B] = degA+ degB − 1;

(ii) [A,B] = (−1)degA degB[B,A];

(iii) [A,B ∧ C] = [A,B] ∧C + (−1)(degA+1) degBB ∧ [A,C];

(iv) [ , ] is given on functions F,G and vector fields X,Y by: [F,G] = 0,
[X,F ] = X · F , and [X,Y ] is the Lie bracket.

Prove that the Jacobi identity for a Poisson structure is equivalent to [B,B] = 0
for the Poisson tensor.
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Hamiltonian flows

We associate to every function H its Hamiltonian vector field XH defined by

XH · F := {F,H}, F ∈ Ω0(M).

In terms of the Poisson tensor,

XH = −idHB.

For time-dependent H(t, x) = Ht(x) define its time-dependent Hamiltonian
vector field by XH(t, x) = XHt

(x). Denote the Hamiltonian flow of H by φHt .

If the Poisson structure is symplectic the Hamiltonian vector field defined by
the Poisson structure agrees with the one defined by the symplectic structure,
which justifies using the same notation XH for both of them.

Lemma 9.4. Let (M, { }) be a Poisson manifold.

(i) The Jacobi identity for { , } is equivalent to LXH
B = 0 for every function

H.

(ii) Xψ∗H = ψ∗XH for every Poisson map ψ.

(iii) F 7→ XF defines a Lie algebra antihomomorphism,

X{F,G} = −[XF , XG].

Proof. (i) Using LXH
dF = d(XH · F ) = d{F,H}, we obtain

(LXH
B)(dG, dG) = XH · B(dF, dG) −B(LXH

dF, dG) −B(dF, LXH
dG)

= XH · {F,G} −B(d{F,H}, dG) −B(dF, d{G,H})
= {{F,G}, H} − {{F,H}, G} − {F, {G,H}}.

(ii) follows from ψ∗B = B:

ψ∗XH = −ψ∗(idHB) = −iψ∗dHB = Xψ∗H .

(iii) follows from the Jacobi identity:

X{F,G} ·H = −{{F,G}, H} = {{G,H}, F}+ {{H,F}, G}
= XF {G,H} +XG{H,F} = −XFXGH +XGXFH

Proposition 9.5. Let φHt be the flow of a time-dependent Hamiltonian on a
Poisson manifold.

(i) For a time-dependent function Ft,

d

dt
(F ◦ φHt ) =

∂F

∂t
◦ φHt + {F,H} ◦ φHt .
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(ii) If H is time-independent, then H ◦ φHt = H (conservation of energy).

(iii) The Hamiltonian flow is a Poisson map,

{F ◦ φHt , G ◦ φHt } = {F,G} ◦ φHt .

Proof. (i) follows straight from the definitions:

d

dt
(F ◦ φHt ) =

∂F

∂t
◦ φHt + (XH · F ) ◦ φHt

=
∂F

∂t
◦ φHt + {F,H} ◦ φHt .

(ii) Put F = H in (i).

(iii) By Lemma 9.4,

d

dt
(φHt )∗B = (φHt )∗LXHt

B = 0,

thus (φHt )∗B = B.

Remark. (cf. [14]). If F and H are time-independent, d
dt

(F ◦φHt ) = {F ◦φHt , H}.
This leads to a more explicit proof of (iii) for time-independent H :

Set u(t) := {F ◦φHt , G◦φHt }−{F,G}◦φHt . Property (i) and the Jacobi identity
yield

du

dt
= {{F ◦ φHt , H}, G ◦ φHt } + {F ◦ φHt , {G ◦ φHt , H}} − {{F,G} ◦ φHt , H}

= {{F ◦ φHt , G ◦ φHt }, H} − {{F,G} ◦ φHt , H}
= {u,H} = XH · u.

It follows that
d

dt
(φH−t)

∗u(t) = (φH−t)
∗(u̇−XH · u) = 0.

Thus u(t) = u(0) ◦ φHt = 0 since u(0) = 0.

Definition. A diffeomorphism of a Poisson manifold is called compactly sup-
ported Hamiltonian diffeomorphism if it is the time-1 map of a time-dependent
compactly supported Hamiltonian.

Lemma 9.6. (cf. [7]). The compactly supported Hamiltonian diffeomorphisms
on a Poisson manifold form a group under composition. More precisely, for
time-dependent Hamiltonians H,K and a Poisson diffeomorphism ψ,

(i) φHt ◦ φKt is the Hamiltonian flow of H(t, x) +K
(

t, (φHt )−1(x)
)

;

(ii) (φHt )−1 is the Hamiltonian flow of −H
(

t, (φHt )−1(x)
)

;

(iii) ψ ◦ φHt ◦ ψ−1 is the Hamiltonian flow of H
(

t, ψ−1(x)
)

.
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Proof. This follows from Xψ∗H = ψ∗XH and Lemma A.1:

(iii) The flow ψ ◦ φHt ◦ ψ−1 is generated by the time-dependent vector field
ψ∗XHt

= Xψ∗Ht
.

(i) The flow φHt ◦ φKt is generated by the time-dependent vector field XHt
+

(φHt )∗XKt
= XHt

+X(φH
t )∗Kt

.

(ii) The flow (φHt )−1 is generated by the time-dependent vector field −(φHt )∗XHt
=

−X(φH
t )∗Ht

.

9.3 Symplectic leaves

Let us now investigate a little more the structure of Poisson manifolds. In
contrast to a symplectic structure a Poisson structure may be degenerate, i.e. the
Poisson tensor may not induce an isomorphism T ∗M → TM . For example,
the rigid body bracket on R3 is degenerate at the origin. At the extreme,
the zero bracket is a perfectly nice Poisson structure. On the other hand, a
nondegenerate Poisson structure is just a symplectic structure:

Lemma 9.7. If a Poisson structure is nondegenerate in the sense that {F,G} =
0 for all G implies F = const (equivalently, the Poisson tensor defines an iso-
morphism T ∗M → TM , λ 7→ iλB), then it is induced by a symplectic structure.

Proof. Define ω by ω(iλB, iµB) := B(λ, µ). In view of the nondegeneracy of B,
ω is well-defined and nondegenerate. It has the following properties:

1. The Hamiltonian vector field XH defined by ω agrees with the one defined
by the Poisson structure, −idFB.

To see this, note that

ω(−idFB,−iµB) = B(dF, µ) = dF (−iµB)

for all µ, hence ω(−idFB, ·) = dF .

2. {F,G} = ω(XF , XG).

This follows from the first claim:

ω(XF , XG) = ω(−idFB,−idGB) = B(dF, dG) = {F,G}.

Now by Lemma 9.3, the Jacobi identity for the Poisson structure implies dω =
0.

Remark. The isomorphism λ 7→ −iλB is the inverse of v 7→ ivω.

A Poisson manifold (M, { , }) carries a natural distribution F spanned by the
Hamiltonian vector fields,

Fx := {XF | F ∈ Ω0(M)} = {iλB | λ ∈ T ∗
xM}.
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Theorem 9.8 (symplectic leaves). The leaves of the distribution F are injec-
tively immersed submanifolds, and the restriction of the Poisson structure to
each leaf is symplectic.

Proof. The first statement follows from the General Frobenius Theorem A.5
once we find a collection of vector fields tangent to F whose flows leave F
invariant, and such that every Fx is spanned by these vector fields. But Hamil-
tonian vector fields provide such a collection: Their flows preserve the Poisson
structure and therefore also F .

For the second statement, note that for a function F which is constant on a
leaf L, XF · G = −XG · F = 0 for every G, thus XF = 0 along L. This shows
that the Hamiltonian vector field of a function at a leaf depends only on the
restriction of the function to the leaf, so the Poisson structure on M induces
Poisson structures on the leaves. Since the tangent space to a leaf is spanned by
Hamiltonian vector fields, the Poisson structure on the leaf is nondegenerate,
hence symplectic by Lemma 9.7.

Corollary 9.9 (Darboux’ Theorem for Poisson structures of constant rank).
Around every point near which the symplectic leaves of a Poisson structure have
constant dimension there exist coordinates qi, pi, zk in which the Poisson struc-
ture satisfies

{qi, qj} = {pi, pj} = 0, {qi, qj} = δij ;

{zk, qi} = {zk, pi} = {zk, zl} = 0.

Proof. Let zk be functions that are constant on the leaves and whose differentials
are a basis of the orthogonal complement to the leaves (in the cotangent spaces).
The Hamiltonian vector field of zk vanishes, so {zk, F} = 0 for every function
F . Now apply a parametric version of the symplectic Darboux’ Theorem to find
symplectic coordinates qi, pi on the leaves.

Remark. At a point x of nonconstant rank it is still true that the Poisson struc-
ture splits into a symplectic structure and a transverse Poisson structure which
is singular at x ([24]). But the transverse structure can be arbitrarily compli-
cated (see [1] for the singularity theory of 2-dimensional Poisson structures).

Casimir functions

A Casimir function for a Poisson structure is a function C that Poisson com-
mutes with all other functions, {C,F} = 0 for all F . The importance of Casimir
functions lies in the obvious fact that they are preserved under any Hamiltonian
flow.

If the Poisson structure is nondegenerate the constants are the only Casimir
functions. The coordinates zk in Darboux’ Theorem are local Casimir functions,
so locally the symplectic leaves are the common level sets of Casimir functions.
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However, there may not exist any nonconstant global Casimir functions for a
degenerate structure:

Problem 9.3. Define a Poisson structure on the 3-torus whose symplectic leaves
form a 2-dimensional linear foliation with irrational slope, and conclude that
this structure admits no nonconstant Casimir functions.

Problem 9.4. Prove that the Casimir functions for the rigid body bracket on R3

are precisely the functions of the form C(ξ) = f(‖ξ‖).
Problem 9.5. Let (Σ, { , }) be a 2-dimensional Poisson manifold.

(i) Prove that the Jacobi identity is automatically satisfied.

(ii) Which values can the rank of the Poisson tensor take?

(iii) Investigate flows of time-independent Hamiltonians on (Σ, { , }). Which
orbit types occur?

(iv) Prove: If a compact (Σ, { , }) admits a time-independent Hamiltonian
flow with only 2 stationary points, then Σ = S2 and the Poisson structure
is symplectic.

(v) Find a time-independent Hamiltonian flow on a (Σ, { , }) which cannot
be a Hamiltonian flow with respect to any symplectic structure. Hint:
Hamiltonian flows with respect to symplectic structures satisfy Poincaré
recurrence.



Chapter 10

Coadjoint orbits

10.1 Actions of compact Lie groups

Definitions

Throughout this section, G is a compact Lie group and M a manifold. A (left)
action of G on M is a group homomorphism G 7→ Diff(M) such that the map

G×M →M, (g, x) 7→ g · x

is smooth. Similarly, a right action is group antihomomorphism G 7→ Diff(M)
such that the map

G×M →M, (g, x) 7→ x · g
is smooth. The map g 7→ g−1 interchanges left and right actions. Unless
otherwise stated, all actions will be left actions.

Denote the orbit of x by

G · x := {g · x | g ∈ G}

and the stabilizer (or isotropy group) of x by

Gx := {g ∈ G | g · x = x}.

Note that Gg·x = gGxg
−1, so all stabilizers along an orbit are conjugate. This

conjugacy class (Gx) is called the type of the orbit.

The infinitesimal (or linearized) action is

g 7→ X (M), X 7→ Xx = XM
x :=

d

dt

∣

∣

t=0
exp tX · x.

Lemma 10.1. The infinitesimal action has the following properties:

89
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(i) The map g 7→ X (M), X 7→ X is linear.

(ii) AdgX = g∗X for g ∈ G.

(iii) [X,Y ] = −[X,Y].

Proof. For (i) just note that for each x ∈ M , X 7→ Xx is the differential of the
map G→M , g 7→ g · x.
(ii) follows from exp(AdgX) = g(expX)g−1:

AdgX
x

=
d

dt

∣

∣

t=0
exp(tAdgX) · x =

d

dt

∣

∣

t=0
g(exp tX)g−1 · x

= Tg−1xg · Xg−1x = (g∗X)x.

(iii) follows from (i), (ii) and [X,Y ] = d
dt

∣

∣

t=0
Adexp tXY :

[X,Y ] =
d

dt

∣

∣

t=0
Adexp tXY

=
d

dt

∣

∣

t=0
(exp tX)∗Y = −[X,Y]

because exp tX is the flow of X.

An action is called

• free if Gx = {e} for all x;

• effective if ∩x∈MGx = {e}.

A free right action of G on the manifold P gives rise to a G-principal bundle

P → B := P/G.

Here a G-principal bundle P → B is a locally trivial fibration with fibre G and
a free fibre-preserving right action of G on P . For a left action of G on another
manifold M we get an associated bundle

P ×GM := P ×M
/

(p, x) ∼ (pg−1, gx), g ∈ G.

P ×GM → B, [p, x] 7→ [p] is a fibre bundle with fibre M .

A subgroup H < G acts on G by right multiplication and thus induces an H-
principal bundle G 7→ G/H . A left action of H on M yields the associated
bundle G ×H M → G/H . In this case we have an additional action of G on
G×H M by left multiplication,

g̃ · [g, x] := [g̃g, x].

Below we will consider the case that H acts linearly on a vector space V , so
that G×H V → G/H is a vector bundle with fibre V .
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The Slice Theorem

Consider a left action G × M → M and a point x ∈ M . To economize on
notation, denote the linearized action of Gx on TxM again by (g, v) 7→ g · v.
This action leaves the tangent space to the orbit Tx(G · x) invariant: Tx(G · x)
is generated by the Xx, X ∈ g, and for h ∈ Gx,

h · Xx ≡ d

dt

∣

∣

t=0
h exp tX · x = AdhXx

.

Thus we get an induced linear action of Gx on

Vx := TxM
/

Tx(G · x).

Theorem 10.2 (Slice Theorem). Let a compact Lie group G act on a manifold
M , and x ∈ M . Then there exists a G-equivariant diffeomorphism from a
neighbourhood of the zero section in G×Gx

Vx onto a neighbourhood of the orbit
G · x in M .

Proof. Pick a G-invariant Riemannian metric on M and let expx : TxM → M
be the corresponding exponential map (defined on a neighbourhood of zero).
Since G maps geodesics to geodesics,

g · expx v = expg·x g · v.

Identify Vx with the orthogonal complement Tx(G · x)⊥ of Tx(G · x) in TxM ,
and consider the map

G× Vx →M, (g, v) 7→ g · expx v.

This map is Gx-invariant, gh−1 · expx(h · v) = g · expx v for h ∈ Gx, and thus
induces a map

f : G×Gx
Vx →M, [g, v] 7→ g · expx v.

The map f is G-equivariant:

f([g̃g, x]) = g̃g · expx v = g̃ · f([g, x]).

I claim that Tf is bijective at points of zero section. In view of theG-equivariance,
it suffices to compute the differential at the point [e, 0]:

T[e,0]f · [X,w] = Xx + w, X ∈ g, w ∈ Vx.

This is surjective and hence bijective by dimension reasons.

Since f embeds the zero section, it follows from the problem below that f
embeds a neighbourhood of the zero section.

Problem 10.1. Let f : N →M be a smooth map between manifolds of the same
dimension. Let Z ⊂ N be a compact submanifold such that f |Z is injective and
Tf is bijective at points of Z. Then f is an embedding on a neighbourhood of
Z.
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Proof. Bijectivity of Tf implies that there exists an open covering U1, . . . , Uk
of Z such that fUi

are embeddings. Let ε > 0 be a Lebesgue number for this
covering, i.e. such that d(x, y) < ε for x, y ∈ ∪Ui implies that x and y lie in the
same Ui for some i. Injectivity of f |Z implies the existence of a neighbourhood
V of Z such that d(x, y) ≥ ε for x, y ∈ V implies f(x) 6= f(y). Thus f is an
embedding on ∪Ui ∩ V .

Let us examine the stabilizers of the G-action in a tube G ×H V . We have
g · [e, v] = [e, v] iff there exists a h ∈ H such that gh−1 = e and hv = v. So
G[e,v] = Hv, and therefore

G[g,v] = gHvg
−1.

In particular, G[g,v] is conjugate to H iffHv = H , i.e. v lies in the linear subspace
V(H) < V of fixed points of H . So the union of orbits in G ×H V of orbit type
(H) is

{[g, v] | v ∈W} = G×H V(H) = G/H × V(H),

which is a subbundle (in particular a submanifold) of G ×H V . In view of the
Slice Theorem, this proves

Proposition 10.3. The union M(H) of orbits of a given orbit type (H) is a
submanifold of M .

Corollary 10.4. The fixed point set M(G) of G is a submanifold of M .

Proposition 10.5. If M is compact there are only finitely many orbit types.

Proof. The proof goes by induction on n = dimM . The case n = 0 is clear.
For the induction step, in view of the Slice Theorem and compactness of M ,
it suffices to show that every tube G ×H V contains only finitely many orbit
types. Let SV be the unit sphere with respect to an H-invariant inner product
on V . Since the action of H on V is linear, [g, λv] and [g, v] have the same orbit
type (Hv) for λ 6= 0. Thus the orbit types in G ×H V are that of the central
orbit G×H 0 and the orbit types in G×H SV , which is a finite number by the
induction hypothesis.

Proposition 10.6. If M/G is connected there is one orbit type (H) for which
M(H) is open and dense in M . Moreover, M(H)

/

G is a connected manifold.

Definition. Such orbits are called principal orbits

Proof. First let us reduce to the case that M and G are connected. If M = ∪Mi

is disconnected, let Gi := {g ∈ G | g ·Mi = Mi}. Let M∗
i be the union of Gi-

principal orbits in Mi. For i 6= j there exists a g ∈ G such that g ·Mi = Mj,
and therefore g ·M∗

i = M∗
j since both are open and dense. This shows that M∗

i

and M∗
j have the same G-principal orbit type (conjugated by g).

Next suppose that M is connected and G = ∪gjG0 disconnected, where G0 is
the identity component. Let M∗

0 be the union of the principal orbits of the
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G0-action on M . Then M∗ := ∪gjM∗
0 is open and dense, and all orbits in M∗

have the same type.

So it suffices to prove the first statement for M and G connected. The proof
uses again induction on n = dimM . The case n = 0 is clear. For the induction
step, choosing a locally finite covering of M by tubes as in the Slice Theorem, it
suffices to prove the statement for a tube G×HV . Let SV be the unit sphere with
respect to an H-invariant inner product. If G×H SV is connected the statement
follows from linearity of the H-action on V and the induction hypothesis. Since
G is connected, the only way that G×H SV can be disconnected is if dimV = 1
and G×H SV → G/H is the trivial two-fold covering. But in this case H acts
trivially on V , so all orbits in G ×H V = G/H × V are of the same type, and
the induction step follows.

Connectivity of M(H)/G follows also by induction. To see that M(H)/G is a
manifold, note that at a principal orbit G · x the representation of Gx on Vx is
trivial, thus (G×Gx

Vx)/G ∼= Vx is a manifold.

We conclude this section with a result on the adjoint representation.

Proposition 10.7. For the adjoint representation of a compact Lie group on
its Lie algebra,

(i) the stabilizer of any point contains a maximal torus;

(ii) the stabilizer of a point on a principal orbit is abelian.

Proof. (i) Any X ∈ g is contained in the Lie algebra t of a maximal torus T .
But then the infinitesimal stabilizer of X , gX = ker(adX), contains t. So GX
contains T .

(ii) Let 〈 , 〉 be an Ad-invariant inner product on g. Then the slice of an element
X ∈ g is

VX ≡ TX(AdG ·X)⊥ = [g, X ]⊥

= {Y ∈ g | 0 = 〈Y, [Z,X ]〉 = 〈Z, [X,Y ]〉 for all Z ∈ g}
= ker(adX)

= gX .

Now suppose X lies on a principal orbit. By the proof of Proposition 10.3, the
stabilizer of X + Y equals the stabilizer of X for any Y ∈ VX sufficiently close
to zero. For the infinitesimal stabilizers this means that gX+Y = gX for all
Y ∈ gX close to zero. In particular, 0 = [X + Y, Z] = [Y, Z] for all Y, Z ∈ gX
close to zero. This proves that gX is abelian.

The following problem shows that the stabilizer of a principal orbit can be
strictly bigger than a maximal torus:

Problem 10.2. Find all the stabilizers of the adjoint representations of SO(3)
and SU(2) on R3.
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10.2 The Lie-Poisson bracket

The interest in Poisson manifolds mainly arises from the fact that the dual g∗

of any Lie algebra g carries a natural Poisson structure, the Lie-Poisson bracket

{F,G}(ξ) := 〈ξ, [dξF, dξG]〉, F,G ∈ Ω0(g∗), ξ ∈ g∗.

Here dξF lies in T ∗
ξ g∗ which is naturally identified with g.

Proposition 10.8. The Lie-Poisson bracket defines a Poisson structure on g∗.

Proof. Skew-symmetry and the derivation property are obvious. For the Jacobi
identity, first compute the differential of {F,G} at ξ in the direction η ∈ Tξg

∗ ∼=
g∗:

d{F,G} · η = 〈η, [dF, dG]〉 + 〈ξ, [D2F · η, dG]〉 + 〈ξ, [dF,D2G · η]〉
= 〈η, [dF, dG]〉 − 〈ad∗

dGξ,D
2F · η〉 + 〈ad∗

dF ξ,D
2G · η〉

= 〈η, [dF, dG]〉 −D2F (ad∗
dGξ, η) +D2G(ad∗

dF ξ, η).

So the differential of {F,G} at ξ is

d{F,G} = [dF, dG] −D2F (ad∗
dGξ, ·) +D2G(ad∗

dF ξ, ·),

and

{{F,G}, H} = 〈ξ, [d{F,G}, dH ]〉
=

〈

ξ,
[

[dF, dG], dH
]

〉

−
〈

ad∗
dHξ,−D2F (ad∗

dGξ, ·) +D2G(ad∗
dF ξ, ·)

〉

=
〈

ξ,
[

[dF, dG], dH
]

〉

+D2F (ad∗
dGξ, ad∗

dHξ) −D2G(ad∗
dF ξ, ad∗

dHξ).

Adding up cyclic permutations, the terms involving second derivatives cancel
because the D2F is symmetric in the two arguments, and the terms involving
triple Lie brackets cancel by the Jacobi identity on g.

Example 10.9. (rigid body bracket) The rigid body bracket is the Lie-Poisson
bracket on the dual of the Lie algebra (R3,×).

Let us compute the Hamiltonian vector field in the Lie-Poisson bracket:

XH · F (ξ) = {F,H}(ξ) = 〈ξ, [dF, dH ]〉 = −〈ad∗
dHξ, dF 〉

for all functions F , thus

Lemma 10.10. The Hamiltonian vector field in the Lie-Poisson bracket is

XH(ξ) = −ad∗
dξH

ξ.
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But

Xg
∗

ξ = −ad∗
Xξ

is just the fundamental vector field of X ∈ g associated to the coadjoint (left)
action

G× g∗ → g∗, (g, ξ) 7→ Ad∗
g−1ξ.

So the Hamiltonian vector fields span precisely the tangent spaces to the coad-
joint orbits! Combined with the Symplectic Leaf Theorem this implies

Proposition 10.11. The coadjoint orbits in g∗ are the symplectic leaves of the
Lie-Poisson bracket, with the symplectic form

ωξ(X
g
∗

ξ ,Y
g
∗

ξ ) := 〈ξ, [X,Y ]〉, X, Y ∈ g.

10.3 Examples of coadjoint orbits

Example 10.12. (G = SO(3)). Identify the Lie algebra so(3) with R3 via

R
3 ∋





x
y
z



 = X 7→ X̂ :=





0 −z y
z 0 −x
−y x 0



 ∈ so(3).

To understand this identification, note that
(

cos t − sin t
sin t cos t

)

is a counterclockwise

rotation in the plane with infinitesimal rotation
(

0 −1
1 0

)

.

Under this identification, the adjoint action on so(3) corresponds to left mul-
tiplication on R3 by SO(3) matrices, the Lie bracket corresponds to the cross
product, and − 1

2 tr corresponds to the dot product 〈 , 〉 on R3:

AdAX̂ = A ·X ;

[X̂, Ŷ ] = X × Y ;

−1

2
tr(X̂Ŷ ) = 〈X,Y 〉.

If we identify so(3) with its dual via this inner product, the coadjoint action
becomes

Ad∗
Aξ̂ = −A · ξ, ad∗

X̂
ξ̂ = −X × ξ.

The coadjoint orbits are the spheres of radius r > 0,

Or := {ξ
∣

∣ ‖ξ‖ = r},

and the singular orbit {0}.
Claim: The induced symplectic form on Or is 1

r
σr, where σr is the standard

surface element on Or.
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Proof. Use the vector identity on R3

A× (B × C) = B(A ·B) − C(A ·B)

to get ξ× (v× ξ) = v‖ξ‖2 − ξ(ξ · v). This shows that given v ∈ TξOr, the vector

X = v×ξ
‖ξ‖2 satisfies ξ ×X = v, so X is a Lie algebra element whose fundamental

vector field at ξ equals v. Now by definition the value of the symplectic form
on v, w ∈ TξOr is

ωξ(v, w) = 〈ξ, (v × ξ) × (w × ξ)

‖ξ‖4
〉

= 〈 ξ

‖ξ‖4
, w

(

(v × ξ) · ξ
)

− ξ
(

(v × ξ) · w
)

〉

= − (v × ξ) · w
‖ξ‖2

=
(v × w) · ξ

‖ξ‖2
.

Thus for with ξ = (x, y, z), ω can be written as

ωξ =
xdy ∧ dz + y dz ∧ dx+ z dx ∧ dy

‖ξ‖2
=

σ

‖ξ‖ .

Problem 10.3. Describe the coadjoint orbits on so(4).

Example 10.13. (G = U(n)).

The Lie algebra u(n) carries the Ad-invariant inner product tr(AB∗) = −tr(AB).
Identify u(n)∗ with the space H of Hermitian matrices, acting on u(n) via

〈ξ,X〉 = tr(iξX), ξ ∈ H, X ∈ u(n).

With these identifications, for A ∈ U(n), X ∈ u(n), ξ ∈ H,

Ad∗
Aξ = A−1ξA, adXξ = ξX −Xξ.

The coadjoint orbits are

Hλ = {ξ ∈ H | spectrum(ξ) = λ},

parametrized by the eigenvalues λ = (λ1, . . . , λn), λ1 ≤ · · · ≤ λn.

If λ1 < · · · < λn, then a matrix ξ ∈ Hλ is characterized by the eigenspaces Lj
of the λj , or equivalently, by the complete flag

E1 ⊂ E2 ⊂ · · · ⊂ En = C
n, Ei =

⊕

j≤i

Lj .

Thus the coadjoint orbit Hλ is the complete flag manifold on Cn. The coadjoint
action on H corresponds to simultaneous multiplication of all subspaces of a flag
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by a U(n)-matrix. To each vector λ there corresponds a symplectic structure
on the complete flag manifold induced from the Lie-Poisson bracket on H.

If λ1 < λ2 = · · · = λn, then a matrix ξ ∈ Hλ is characterized by the eigenspace
L1 to the eigenvalue λ1. So the coadjoint orbit Hλ is diffeomorphic to CPn−1.
The coadjoint action on Hλ corresponds to the standard linear action of U(n)
on CPn−1. Different values of λ1, λ2 yield a 2-parameter family of symplectic
structures on CPn−1.

For other types of λ the coadjoint orbits are noncomplete flag manifolds.

Problem 10.4. Express the symplectic forms on Hλ, λ1 < λ2 = · · · = λn, in
terms of the standard form on CPn−1.

Problem 10.5. Describe the 6-manifold Hλ, λ1 < λ2 < λ3, and the induced
symplectic forms on it.
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Appendix A

Calculus on manifolds

A.1 Flows and vector fields

A time-dependent vector field X(t, x) = Xt(x) on a manifold M defines a flow,
i.e. a 1-parameter family of diffeomorphisms φXt : M →M , via

d

dt
φt(x) = X

(

t, φt(x)
)

.

The flow may only exist for some finite time interval, but for simplicity let us
assume it exists for all times. Every smooth 1-parameter family of diffeomor-
phisms is the flow of a time-dependent vector field. The flow is a 1-parameter
group, φXs+t = φXs ◦ φXt , if and only if the vector field X is time-independent.

The following lemma describes how operations on flows correspond to operations
on vector fields.

Lemma A.1. Let X,Y be time-dependent vector fields with flows φXt , φ
Y
t , ψ a

diffeomorphism, and h(t, x), f(x) smooth functions.

(i) (composition). φXt ◦ φYt is the flow of the vector field Xt + (φXt )∗Yt.

(ii) (inverse). (φXt )−1 is the flow of the vector field −(φXt )∗Xt.

(iii) (conjugation). ψ ◦ φXt ◦ ψ−1 is the flow of the vector field ψ∗Xt.

(iv) (reparametrization). φXh(t,x) is the flow of the vector field Yt defined by

Yt

(

φXh(t,x)(x)
)

=
∂h

∂t
(t, x)Xh(t,x)

(

φXh(t,x)(x)
)

.

Conversely, if X is time-independent, the flow of f(x)X is φXh(t,x), where

for every x the function t 7→ h(t, x) is the unique solution of the ordinary

99
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differential equation

∂h

∂t
(t, x) = f

(

φXh(t,x)(x)
)

;

h(0, x) = 0.

Proof. 1.

d

dt
(φXt ◦ φYt ) = Xt(φ

X
t ◦ φYt ) + TφXt · Yt(φYt )

= Xt(φ
X
t ◦ φYt ) + (φXt∗Yt)(φ

X
t ◦ φYt ).

2.

0 =
d

dt

(

(φXt )−1 ◦ φXt
)

= Yt + T (φXt )−1 ·Xt(φ
X
t )

= Yt + (φXt )∗Xt.

3.

d

dt
(ψ ◦ φXt ◦ ψ−1) = Tφ ·Xt(φ

X
t ◦ ψ−1)

= ψ∗Xt(ψ ◦ φXt ◦ ψ−1).

4.
d

dt
φXh(t,x) =

∂h

∂t
(t, x)Xh(t,x)(φ

X
h(t,x)) =: Yt(φ

X
h(t,x)).

Form now on let all vector fields be time-independent. The Lie derivative of
any tensor field τ in the direction of a vector field X is defined as

LXτ :=
d

dt

∣

∣

t=0
(φXt )∗τ.

The Lie derivative is related to flows as follows:

Lemma A.2. Let X,Y be vector fields and ψ a diffeomorpism

(i) ψ∗X = d
dt

∣

∣

t=0
ψ ◦ φXt ◦ ψ−1;

(ii) ψ∗X = X if and only if ψ ◦ φXt = φXt ◦ ψ;

(iii) LXY = [X,Y ];

(iv) [X,Y ] = 0 if and only if the flows commute, φXt ◦ φYs = φYs ◦ φXt .
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Proof. 1.

d

dt

∣

∣

t=0
ψ ◦ φXt ◦ ψ−1 = Tψ ·X(ψ−1) = ψ∗X.

2.

d

ds
(ψ ◦ φXt ) = Tψ ·X(φXt ) = (ψ∗X)(ψ ◦ φXt ),

d

ds
(φXt ◦ ψ) = X(φXt ◦ ψ).

If ψ∗X = X these equations define the same flow.

3. By property 1 we get for a function f :

LXY · f =
∂2

∂s∂t
f ◦ (φXt )−1 ◦ φYs ◦ φXt

=
∂2

∂s∂t
(f ◦ φYs ◦ φXt − f ◦ φXt ◦ φYs )

= [X,Y ] · f.

4. [X,Y ] = 0 implies d
dt

(φXt )∗Y = (φXt )∗LXY = 0, so (φXt )∗Y = Y . By
property 2 this implies φXt ◦ φYs = φYs ◦ φXt .

The following formula plays an important role in symplectic geometry:

Lemma A.3 (Cartan’s formula). For a vector field X and a k-form α on a
manifold,

LXα = iXdα+ d iXα.

Proof. Let φt be the flow of X and γ a k-chain. Then Γ := φ([0, t] × γ) is a
(k + 1)-chain, and Stokes’ Theorem reads

∫

Γ

dα =

∫

φt(γ)

α−
∫

γ

α−
∫

φ([0,t]×∂γ)

α.

The t-derivative at t = 0 and another application of Stokes’ Theorem yield

∫

γ

iXdα =

∫

γ

LXα−
∫

∂γ

iXα =

∫

γ

LXα−
∫

γ

d iXα.

The formulae summarized below are easy consequences of the definitions and
the results above.
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Summary: formulae for Lie derivative and exterior deriva-

tive

Let X,Xi, Y be vector fields, σ, τ tensor fields, f a function and α a k-form.

(i) LXf = X · f .

(ii) LXY = [X,Y ].

(iii) LXiτσ = iLXτσ + iτLXσ.

(iv) Properties 1-3 determine the Lie derivative uniquely on arbitrary tensor
fields. In particular,

LXα(X1, . . . , Xk) = X · α(X1, . . . , Xk) −
k

∑

i=1

α(X1, . . . , [X,Xi], . . . , Xk).

(v) (Cartan’s formula). LXα = d iXα+ ixdα.

(vi)

dα(X0, . . . , Xk) =
k

∑

i=0

(−1)iXi · α(X0, . . . , X̂i, . . . , Xk)

+
∑

0≤i<j≤k

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

where X̂i means the Xi is omitted.

Lemma A.4 (Relative Poincaré Lemma). Let M be a manifold that deforma-
tion retracts onto a closed submanifold A ⊂M . Let α be a closed k-form on M
such that α|W = 0. Then there exists a (k − 1)-form β on M such that β = 0
along W and dβ = α.

Proof. (cf. citeCdS, [11]). Let φs : M →M be the deformation retraction such
that φ1 = 1l, φ0 : M →W , and φs|W = 1l. Define vectorsXs

(

φs(x)
)

:= d
ds
φs(x),

and the homotopy operator P : Ωk(M) → Ωk−1(M),

Pα :=

∫ 1

0

φ∗s(iXs
α)ds.

Although Xs is not a vector field, the explicit form

(Pα)x =

∫ 1

0

i
Xs

(

φs(x)
)αφs(x) ◦ Txφs ds
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shows that P is well-defined. By Cartan’s formula,

dPα− Pdα =

∫ 1

0

(

φ∗sdiXs
α− φ∗siXs

dα
)

ds

=

∫ 1

0

φ∗sLXs
αds =

∫ 1

0

d

ds
φ∗sαds

= φ∗1α− φ∗0α.

Using φ1 = 1l and φ0 = i◦π where i : W →M is the inclusion and π : M →W ,
we obtain the homotopy formula

dPα− Pdα = α− π∗i∗α.

moreover, ψs|W = 1l implies that Pα vanishes along W . If dα = 0 and α|W = 0
the homotopy formula becomes dPα = α, so β := Pα is the desired (k − 1)-
form.

A.2 Frobenius’ Theorem

Consider a distribution F of subspaces Fx ⊂ TxM on a manifold M which is
smooth in the sense that for every x ∈ M there exist vector fields X1, . . . , Xk

tangent to F such that X1(x), . . . , Xk(x) is a basis for Fx. This implies that
the dimension of F is a lower semicontinuous function on M .

Define the leaves of a distribution as follows: Two points are on the same leaf
if they can be connected by a piecewise smooth path tangent to F .

The distribution is called integrable if for every x the vector fields X1, . . . , Xk

can be chosen in such a way that their flows preserve F . Note that we do not
require F to have constant rank.

Problem A.1. Find the simplest example of an integrable distribution which is
not of constant rank.

Theorem A.5 (General Frobenius Theorem). For a smooth distribution F the
following statements are equivalent:

(i) The flow of every vector field tangent to F leaves F invariant.

(ii) There exists a set S of vector fields tangent to F whose flows leave F
invariant, and such that every Fx is spanned by vector fields in S.

(iii) Each leaf L is an injectively immersed submanifold with TxL = Fx for all
x ∈ L.

Proof. (i) =⇒ (ii): obvious.
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(ii) =⇒ (iii): Fix x ∈ L and let X1, . . . , Xk be vector fields in S such that
X1(x), . . . , Xk(x) is a basis for Fx. Define a map

ψ : t = (t1, . . . , tk) 7→ φ1
t1
◦ · · · ◦ φktk(x),

where φit is the flow of Xi. This map has the following properties:

1. There exist open neighbourhoods V of x in M and U = (−ε, ε)k = φ−1(V )
of 0 in Rk such that ψ : U → V is an embedding.

This holds because the differential at 0,

T0ψ(v1, . . . , vk) =

k
∑

i=1

viXi(x)

is an injective map Rk → TxM .

2. ψ(t) ∈ L for all t ∈ U .

Indeed, the path x → φktk(x) → φk−1
tk−1

◦ φktk(x) → · · · → ψ(x) following the flow
lines is a piecewise smooth path tangent to F .

3. Ttψ · Rk = Fψ(t) for all t ∈ U .

The inclusion ⊂ follows from

Ttψ · ei =
∂

∂ti
ψ1
t1
◦ · · · ◦ φktk(x)

=
(

φ1
t1
◦ · · · ◦ φi−1

ti−1

)

∗
Xi

(

φiti ◦ · · · ◦ φktk(x)
)

,

which lies in F because Xi ∈ F and the flows preserve F . For the other
inclusion, just note that the flows preserve F and therefore the rank of F is
constant (= k) along the leaf L.

4. ψ(U) is the path component of L ∩ V containing x.

Clearly ψ(U) is contained in the path component. For the converse, let y be
a point in V that can be connected to x by a piecewise smooth path γ in V
tangent to F . Without loss of generality, suppose γ is smooth. Extend γ̇ to a
time-dependent vector field X on V tangent to F such that γ̇(t) = X

(

t, γ(t)
)

.

(This is possible by writing γ̇(t) =
∑

i fi
(

t, γ(t)
)

Xi

(

γ(t)
)

and extending the
functions fi). The vector field X is tangent to the submanifold ψ(U) ⊂ V .
So by the uniqueness theorem for ordinary differential equations, γ(t) stays on
ψ(U), which proves that y ∈ ψ(U).

(iii) =⇒ (i): This is proved as Step 4 in (ii) =⇒ (iii).

A distribution F satisfying the conditions of the General Frobenuis Theorem
is called integrable. If F is integrable then it is involutive: If X,Y are vector
fields tangent to F , then [X,Y ] is tangent to F . This follows directly from
property (iii), or from property (i) as follows: Since the flow φXt preserves F ,
(

(φXt )∗Y
)

x
∈ Fx for all t, and thus [X,Y ]x = d

dt

∣

∣

t=0

(

(φXt )∗Y
)

x
∈ Fx. If F has

constant rank the converse is true:
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Theorem A.6 (Classical Frobenius Theorem). A smooth distribution F of
constant rank is integrable if and only if it is involutive.

Proof. If F has constant rank, we can write it locally as F = {α1 = · · · = αl =
0} for linearly independent 1-forms αi. Suppose that F is involutive. Then for
vector fields X,Y tangent to F ,

LXαi(Y ) = (d iXαi + iXdαi)(Y ) = dαi(X,Y )

= X · αi(Y ) − Y · αi(X) − αi([X,Y ]) = 0.

This shows that LXαi vanishes on F , so it can be written as

LXαi =
∑

j

fijαj

for unique functions fij . For the flow φt of X this implies

d

dt
φ∗tαi = φ∗t

∑

j

fijαj =
∑

j

(φ∗t fij)φ
∗
tαj .

So the vector α(t) := (φ∗tα1, . . . , φ
∗
tαl)x satisfies the linear differential equation

on (T ∗
xM)k,

d

dt
α(t) = A(t)α(t),

where A(t) is the matrix with components (φ∗t fij)(x). This equation has the
solution

α(t) = exp
[

∫ t

0

A(s)ds
]

α(0),

so at the point x each φ∗tαi is a linear combination of the αj . This shows that
φ∗tαi vanishes on F for all i, so φt preserves F , and condition (i) of the General
Frobenius Theorem holds.

Problem A.2. Find an example of a distribution (not of constant rank) which
is involutive but not integrable.
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