| 1. Vortrag
29.10.02 |
Definitions, Morse Lemma (Quelle: [Mi1] Kapitel I, S. 4--13) |
|
| 2. Vortrag
5.11.02 |
Homotopy Type in Terms of Critical Values (Quelle: [Mi1] Kapitel I, S. 14--24) |
|
| 3.Vortrag
12.11.02 |
Examples, Morse inequalities (Quelle: [Mi1], Kapitel I, S. 25-31 |
|
| 4.Vortrag
26.11.02 |
Existence of Morse functions (Quelle: [Mi1], Kapitel I, S. 32-38 ) |
|
| 5.Vortrag
3.12.02 |
Lefschetz Theorem (Quelle: [Mi1], Kapitel I, S. 39-42) |
Review of Riemannian Geometry, Geodesics and Completeness (Quelle: [Mi1], Kapitel II, S. 43--66) |
| 6.Vortrag
10.12.02 |
Path Space of a Manifold, Energy, Hessian of the Energy Functional (Quelle: [Mi1], Kapitel III, S. 67 -- 82 ) |
|
| 7.Vortrag
17.12.02 |
Morse Index Theorem, Topology of Path Spaces (Quelle: [Mi1], Kapitel III, S. 83--97 ) |
|
| 8. Vortrag
|
Topology und Curvature (Quelle: [Mi1], Kapitel III, S. 98 -- 108) |
|
| 9. Vortrag
--- |
Symmetric Spaces and Lie Groups (Quelle: [Mi1], Kapitel IV, S. 109 -- 123) |
|
| 10. Vortrag
--- |
The Bott Periodicity Theorem for the Unitary Group (Quelle: [Mi1], Kapitel IV, S. 124-- 132 ) |
|
| 11. Vortrag
--- |
The Bott Periodicity Theorem for the Orthogonal Group (Quelle: [Mi1], Kapitel IV, S. 133-- 146 ) |
| [Mi1] | J. Milnor
Morse Theory Princeton University Press (1963) |
| [Mat] |
Y. Matsumoto, An Introduction to Morse Theory, AMS,
Translations of mathematical Monographs, vol. 208 |