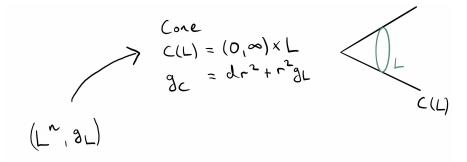
Obstructions to the desingularization of nearly G₂ and nearly Kähler conifolds

Lothar Schiemanowski

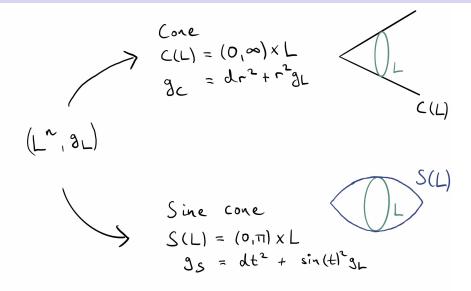
Uni Kiel

2023-03-08

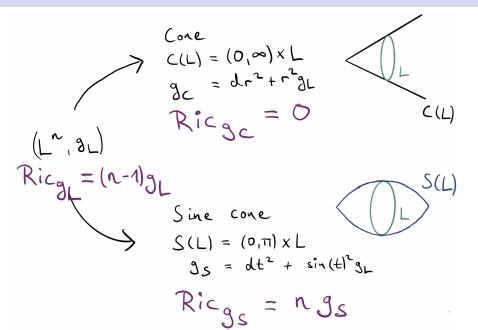
Geometry of cones and sine cones



Geometry of cones and sine cones

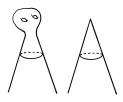


Geometry of cones and sine cones



A construction method for positive Einstein manifolds?

- (L, g_L) with $\operatorname{Ric}_{g_L} = (n-1)g_L$
- The cone $(C(L), g_C)$ is Ricci flat
- A desingularization of $(C(L), g_C)$ is a Ricci flat, asymptotically conical manifold (M, g) with tangent cone $(C(L), g_C)$



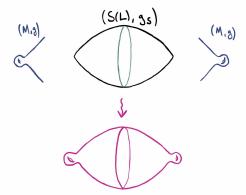
• (M,ϵ^2g) converges to $(C(L),g_C)$ as $\epsilon
ightarrow 0$

A construction method for positive Einstein manifolds?

•
$$(L,g_L)$$
 with $\operatorname{Ric}_{g_L} = (n-1)g_L$

• (M,g) Ricci flat and asymptotically conical with tangent cone $(C(L),g_C)$

• Glue in a copy of $(M, \epsilon^2 g)$ at both tips of $(S(L), g_L)$



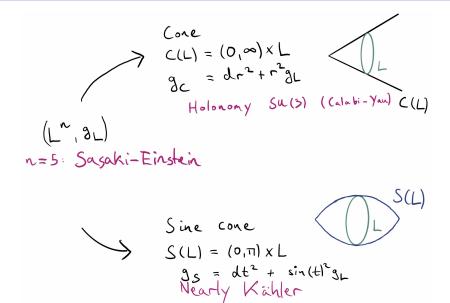
• The closed manifold so constructed is Einstein away from the tips.

• Question: Can this be perturbed to an actual Einstein manifold?

Geometry of cones and sine cones revisited

Cone $C(L) = (0,\infty) \times L$ $g_{C} = dr^{2} + r^{2}g_{L}$ C(L)(L~, 3L) S(L) Sine cone $S(L) = (\sigma, \pi) \times L$ $g_{S} = dt^{2} + \sin(t)^{2}g_{L}$

Geometry of cones and sine cones revisited



Geometry of cones and sine cones revisited

Cone $C(L) = (0,\infty) \times L$ gc = dr² + r²gL Holonomy SU(3) (Calabi-Yau) C(L) (L~, 3L) Holonomy G2 n=5: Sasaki-Einstein n=6: Nearly Kähler S(L) Sine cone $S(L) = (0,\pi) \times L$ 3s = dt² + sin(tl²gr Nearly Kähler

Some G_2 geometry

- G₂ structures on a 7-manifold are parametrized by stable 3-forms
- For a stable 3-form $\varphi \in \Omega^3_+(M)$,

$$\mathcal{G}_x = \{A \in \operatorname{Aut}(\mathcal{T}_x M) : A^* \varphi(x) = \varphi(x)\}$$

is isomorphic to $\mathsf{G}_2\subset\mathsf{SO}(7)$

- φ induces a Riemannian metric g_{φ}
- $\operatorname{Hol}_0(M, g_{\varphi})$ is isomorphic to a subgroup of G_2

$$\label{eq:constraint} \begin{array}{c} \label{eq:constraint} \\ \ensuremath{d} \varphi = \mathbf{0}, \qquad \ensuremath{d} \ast_{\mathbf{g}_{\varphi}} \varphi = \mathbf{0}. \end{array}$$

• (M, φ) is nearly **G**₂ if

$$d\varphi = 4 *_{g_{\varphi}} \varphi$$

Obstruction to desingularizing nearly G₂ sine cones

Theorem (S., 2022)

- (L, g_L) 6-dimensional nearly Kähler manifold
- $(C(L), g_C, \varphi_C)$ the associated G_2 cone
- $(S(L), g_S, \varphi_S)$ the associated nearly G_2 sine cone
- (M, g, φ) is an AC G₂ manifold with tangent cone (C, g_C, φ_C)

 $\exists \text{ smooth desingularization of } (S(L), \varphi_S) \text{ by } (M, \varphi) \\ \implies *\varphi \text{ is exact}$

Idea of proof.

 (X, φ_t) , $t \in (0, \epsilon)$

$$arphi_t o arphi_S$$
 as $t o 0,$ $t^{-3} arphi_t o arphi$ as $t o 0$

Let $\widetilde{\varphi}_t = t^{-3} \varphi_t$, then $d\widetilde{\varphi}_t = 4t * \widetilde{\varphi}_t$. Apply $\frac{d}{dt}\Big|_{t=0}$.

The rate of an asymptotically conical manifold

Definition

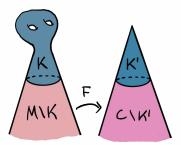
Let (C, g_C) be a cone.

A complete Riemannian manifold (M, g) is asymptotically conical with tangent cone (C, g_C) at rate $\nu < 0$, if

- \exists compact set $K \subset M$, $K' \subset C$
- \exists diffeomorphism $F : C \setminus K' \to M \setminus K$

such that

$$r^{k}|\nabla^{k}(F^{*}g-g_{C})|_{g_{C}}=O\left(r^{\nu}\right)$$



Topology of asymptotically conical G₂ manifolds

Theorem (S., 2022)

Let (M, φ, g) be an AC G₂ manifold with rate $\nu < -3$.

 $*\varphi$ is exact \iff (M,g) is isometric to (\mathbb{R}^7, g_{eucl})

- $\bullet\,$ Therefore, sine cones can not be desingularized by AC G_2 manifolds with rate $\nu<-3$
- The classical examples are: [Bryant and Salamon (1989)]

Manifold	Rate	$H^4_{dR}(M)$
Λ^2S^4	-4	$\mathbb R$
$\Lambda^2\mathbb{CP}^2$	-4	\mathbb{R}
$\Sigma S^3 = \mathbb{R}^4 imes S^3$	-3	0

• There are infinitely many more examples of rate -3 [Foscolo, Haskins, Nordström 2021]

Theorem (S., 2022)

Let (M, φ, g) be an AC G₂ manifold with rate $\nu < -3$.

 $* \varphi$ is exact \iff (M,g) is isometric to $(\mathbb{R}^7, g_{ ext{eucl}})$

• A G_2 cone carries the conformal Killing vector field $r\partial_r$ for which

$$\mathcal{L}_{r\partial_r}g_C = 2g_C,$$
$$\mathcal{L}_{r\partial_r}\varphi_C = 3\varphi_C, \qquad \mathcal{L}_{r\partial_r} * \varphi_C = 4 * \varphi_C.$$

- Goal: construct "approximate" conformal Killing vector field on (M,g)
- $r\partial_r$ is the gradient vector field of $\frac{1}{2}r^2$
- There exists a function $u: M \to \mathbb{R}$ asymptotic to $\frac{1}{2}r^2$ and $\Delta u = -n$
- The form $\kappa = \mathcal{L}_{\text{grad } u} * \varphi 4 * \varphi$ is harmonic
- Asymptotics of u and Hodge theory imply κ vanishes
- The only complete cone is \mathbb{R}^n with the Euclidean metric

Theorem (S., 2022)

Suppose (L, g_L) is a Sasaki–Einstein 5-manifold and (M, g) is an asymptotically conical Calabi–Yau manifold with tangent cone $(C(L), g_C)$. Then if the rate of (M, g) is smaller than -3, the sine cone $(S(L), g_S)$ can not be smoothly desingularized by gluing in (M, g).

Theorem (S., 2022)
$$(M, \omega \in \Omega^2(M), \Omega \in \Omega^3(M, \mathbb{C}), g)$$
 $g \in \Omega^3(M, \mathbb{C}), g \in \Omega^3(M, \mathbb{C})$ $(Kähler form holomorphic volume form Then: ω^2 and $\operatorname{Re} \Omega$ are both exact (M, g) is isometric to $(\mathbb{R}^6, g_{eucl}).$$