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Energy of mappings of Riemannian manifolds

Let (Mm,g) and (Nn,h) be Riemannian manifolds:

Definition

The energy of a mapping F : (M,g)→ (N,h) is

E2(F ) =
∫
M

|dF |2dVolM , (1)

where |dF | is the Euclidean norm of the differential dF .

For F : (M,g)→ R, this is the Dirichlet energy of the function F , and when dim(M) = 1,
this coincides with the standard definition of the energy of a path in a Riemannian
manifold.

N.B. Many authors define the energy to be 1
2 the definition above.
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Energy minimizing mappings of the complex projective plane

Theorem (H. [Hois21])

Let g̃ be a Kähler metric on CP2, and let F : (CP2, g̃)→ (M,g) be a mapping to a
Riemannian manifold.

Let A⋆ be:

inf{|f (S2)| | f : S2 → (M,g) is in the free homotopy class of F |CP1 .}

Then E2(F )≥ 2πA⋆.

Equality implies that F is smooth and that, letting V be the domain in CP2 on which
rk(dF ) = 4, F ∗g is a Kähler metric on V .

Moreover, F (V ) is minimal in (M,g) and its second fundamental form can be
diagonalized by a unitary basis rel. to F ∗g.
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Harmonic mappings
Eells and Sampson [ES64] initiated the study of the critical points of the energy
functional on the space of mappings between compact Riemannian manifolds:

Definition

Let (M,gM), (N,gN) be closed Riemannian manifolds. A harmonic mapping
F : (M,gM)→ (N,gN) is a critical point of the energy functional on the space of
mappings from M to N.

Geodesics are harmonic mappings of intervals or loops (when parametrized with
constant speed). More generally, (isometric immersions of) minimal submanifolds are
harmonic mappings. Holomorphic (and antiholomorphic) mappings of compact Kähler
manifolds are harmonic [Lic70] – more on this later. Group homomorphisms of
compact Lie groups with bi-invariant metrics are harmonic.

Theorem

Let (M,gM), (N,gN) be closed Riemannian manifolds. Suppose (N,gN) has
nonpositive sectional curvature.

Eells, Sampson [ES64]: Every mapping f : (M,gM)→ (N,gN) is homotopic to a
harmonic mapping f∞ with E2(f∞)≤ E2(f ).

The results of [ES64] and subsequent work of Hartman [Har67] imply that the identity
mapping of a closed Riemannian manifold with non-positive sectional curvature is
energy minimizing in its homotopy class.
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Harmonic and energy minimizing Maps

The identity mapping of any closed Riemannian manifold is harmonic, however it is not
always energy minimizing in its homotopy class:

Conformal dilations of the round sphere (Sn,g0), n ≥ 3 give energy-decreasing
deformations of the identity mapping. In fact, the energy of these mappings
decays to 0.

In particular, the identity mapping of (Sn,g0), n ≥ 3 is not a stable critical point of
the energy functional and the identity map is not energy-minimizing in its
homotopy class.

*** For surfaces, the energy of a mapping is bounded below by the area of the
image, with equality precisely when the mapping is conformal. Thus, the identity
mapping of any Riemannian surface is energy minimizing in its homotopy class.

Brian White has proven:

Theorem (White [Wh86])

Let (M,g) be a closed Riemannian manifold with π1(M) = π2(M) = 0. Then the identity
mapping of M is homotopic to maps with arbitrarily small energy.

In fact, White’s results say more – more on this later.
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Energy minimizing mappings of real projective space

In real projective space with its canonical (round) metric, on the other hand, the identity
mapping is energy-minimizing in its homotopy class. This was proven by Croke and
follows from a more general lower bound for the energy of mappings of RPn:

Theorem (Croke [Cr87])

Let F : (RPn,g0)→ (M,g) be a mapping to a Riemannian manifold (M,g).

Let L⋆ be the infimum of the lengths of paths in the free homotopy class of F (γ), where
γ is a geodesic of (RPn,g0). Then:

E2(F )≥ σ(n)
2π2 L⋆2

, (2)

where σ(n) = Vol(Sn). Equality implies that F is a homothety onto a totally geodesic
submanifold.

In particular, the identity mapping of (RPn,g0) is energy minmimizing in its homotopy
class, uniquely up to isometries.
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Energy minimizing mappings of complex projective space

The identity mapping of complex projective space with its canonical metric is also
energy-minimizing in its homotopy class.

This follows from a much more general theorem of Lichnerowicz:

Theorem (Lichnerowicz [Lic70])

Let (X ,hX ) and (Z ,hZ ) be compact Kähler manifolds.

Let F : X → Z be a mapping which is (anti-)holomorphic.

Then for any mapping f : X → Z which is homotopic to F , E2(f )≥ E2(F ). Equality
holds iff f is also (anti-)holomorphic.

In particular, holomorphic and antiholomorphic mappings of compact Kähler manifolds
minimize energy in their homotopy classes.

Hoisington Energy-minimizing maps



Energy minimizing mappings of complex projective space

The identity mapping of complex projective space with its canonical metric is also
energy-minimizing in its homotopy class.

This follows from a much more general theorem of Lichnerowicz:

Theorem (Lichnerowicz [Lic70])

Let (X ,hX ) and (Z ,hZ ) be compact Kähler manifolds.

Let F : X → Z be a mapping which is (anti-)holomorphic.

Then for any mapping f : X → Z which is homotopic to F , E2(f )≥ E2(F ). Equality
holds iff f is also (anti-)holomorphic.

In particular, holomorphic and antiholomorphic mappings of compact Kähler manifolds
minimize energy in their homotopy classes.

Hoisington Energy-minimizing maps



Energy minimizing mappings of real and complex projective spaces

So, to recap:

The identity mapping of (RPn,g0) is energy minimizing in its homotopy class. This
follows from a lower bound for the energy of a mapping of (RPn,g0) with a rigid
equality characterization (homothety onto a totally geodesic submanifold).

The identity mapping of (CPN ,g0) is energy minimizing in its homotopy class. This
follows from Lichnerowicz’s theorem about mappings of Kähler manifolds.

However, Lichnerowicz’s theorem also implies that the equality case for (CPN ,g0) must
be bigger than for (RPn,g0):

There are biholomorphic mappings of CPN in the homotopy class of the identity which
are not isometries of g0. Lichnerowicz’s theorem implies these are also energy
minimizing.
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Calibrations and energy minimizing mappings of complex projective
spaces

To recap:

The energy minimizing property of the identity mapping of (CPN ,g0) can also be
proven by an adaptation of Croke’s proof for (RPn,g0). This also gives a lower bound
for the energy of any mapping from (CPN ,g0) to a Riemannian manifold (M,g):

Theorem (Croke [Cr87])

Let F : (CPn,g0)→ (M,g) be a mapping to a Riemannian manifold (M,g). Let A⋆ be
the infimum of the areas of f : S2 → M in the free homotopy class of F (CP1). Then:

E2(F )≥ 2πN−1

(N −1)!
A⋆. (3)

Equality holds in (3) for the identity mapping, however the calibrated structure of a
Kähler manifold implies that equality also holds for any holomorphic mapping
F : (CPN ,g0)→ (X ,h) to a compact Kähler manifold.

The theorem at the beginning implies that holomorphic (and antiholomorphic)
mappings are essentially the only such energy-minimizing mappings of (CP2,g0).

Moreover, it shows that the same sharp lower bound holds for the energy of mappings
of CP2 with any Kähler metric g̃, and that holomorphic and antiholomorphic mappings
are the only such energy-minimizing mappings of Kähler metrics on CP2.
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for the energy of any mapping from (CPN ,g0) to a Riemannian manifold (M,g):

Theorem (Croke [Cr87])

Let F : (CPn,g0)→ (M,g) be a mapping to a Riemannian manifold (M,g). Let A⋆ be
the infimum of the areas of f : S2 → M in the free homotopy class of F (CP1). Then:

E2(F )≥ 2πN−1

(N −1)!
A⋆. (3)

Equality holds in (3) for the identity mapping, however the calibrated structure of a
Kähler manifold implies that equality also holds for any holomorphic mapping
F : (CPN ,g0)→ (X ,h) to a compact Kähler manifold.

The theorem at the beginning implies that holomorphic (and antiholomorphic)
mappings are essentially the only such energy-minimizing mappings of (CP2,g0).

Moreover, it shows that the same sharp lower bound holds for the energy of mappings
of CP2 with any Kähler metric g̃, and that holomorphic and antiholomorphic mappings
are the only such energy-minimizing mappings of Kähler metrics on CP2.
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A characterization of Kähler surfaces

The proof of the the theorem at the beginning uses the following lemma:

Lemma (H. [Hois21])

Let (X ,h) be a Hermitian surface (of complex dimension 2).

Suppose that for all x0 ∈ X and all complex lines Π in Tx0 X there is a complex curve
ΣΠ ⊆ X (of complex dimension 1) with Π tangent to ΣΠ, and with the mean curvature of
ΣΠ vanishing at x0.

Then h is a Kähler metric.

In particular, if (X ,h) is a Hermitian surface in which all complex curves are minimal
then h is a Kähler metric.

In fact, a more general statement holds.
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A characterization of Kähler surfaces

For mappings of CPN in general:

Theorem (H. [Hois21])

Let g̃ be a Kähler metric on CPN , suppose WLOG that g̃ is cohomologous to the
canonical metric g0 with sectional curvature K satisfying 1 ≤ K ≤ 4.

Let F : (CPN , g̃)→ (Mm,g) be a mapping to a Riemannian manifold (M,g) and A⋆ the
infimum of the areas of surfaces in the free homotopy class of F∗(CP1). Then:

E2(F )≥ 2πN−1

(N −1)!
A⋆. (4)

Equality implies that F ∗g is a positive semidefinite Hermitian bilinear form on CPN , in
particular a Hermitian metric on the domain V on which rk(dF ) = 2N.

Letting ω∗ denote the Kähler form of F ∗g, for all k = 1,2, . . . ,N −1, d(ω∗k
) vanishes on

all complex tangent subspaces of complex dimension k +1. In particular, ω∗N−1
is

closed.

Moreover, F (V ) is a minimal submanifold of (M,g), and the second fundamental form
of F (V ) in (M,g) can be diagonalized by a unitary basis of F ∗g.

In particular, for all complex surfaces Z in CPN , F ∗g|Z∩V is a Kähler metric.
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Parallels with systolic geometry

The systolic inequality for RP2 states:

Theorem (Pu [Pu52])

Let g be a Riemannian metric on RP2. Let A be its area, and let sys(g) be the length of
the shortest non-contractible curve in (RP2,g). Then:

A ≥ 2
π

sys(g)2. (5)

Equality holds if and only if g has constant curvature.

Pu’s inequality for RP2 can be seen as a special case of Croke’s lower bound for the
energy of f : (RP2,g0)→ (M,g):

Any Riemannian metric g on RP2 is conformally equivalent to a metric g0 with constant
curvature, unique up to scale.

The area of (RP2,g) is equal to the energy of the identity mapping
(RP2,g0)→ (RP2,g).

Croke’s lower bound for energy then gives Pu’s inequality (5).
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Parallels with systolic geometry

The stable systolic inequality for CPN states:

Theorem (Gromov [Gr81], see also [BKSW09])

Let g be a Riemannian metric on CPN . Let Vol(CPN ,g) be its volume and stsys2(g) its
stable 2-systole, that is:

stsys2(g) = lim
k→∞

µk

k
,

where µk is the minimum mass of an integral current representing k ∈ H2(CPN ;Z) ∼= Z.

Then we have:

Vol(CPN ,g)≥ stsys2(g)N

N!
.

Equality holds for the canonical metric g0 on CPN .

However this implies that equality holds for all Kähler metrics g̃ on CPN . Again, this
follows from the calibrated structure of the Kähler metric.
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Parallels with systolic geometry

Quaternionic projective space HPN satisfies a stable systolic inequality like CPN .

However, it turns out the canonical metric is not optimal!

Theorem (Bangert, Katz, Shnider, Weinberger [BKSW09])

Let g be a Riemannian metric on HP2 and stsys4(g) the stable 4-systole of g (defined
as above for H4(HPN ;Z) ∼= Z). There is a positive constant D2, independent of g, such
that:

Vol(HP2,g)≥ D2stsys4(g)2. (6)

The optimal constant in (6) satisfies 1
6 ≥ D2 ≥ 1

14 , which excludes the value 3
10 of the

canonical metric.
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Energy Functionals of Mappings of Riemannian Manifolds
The energy of a mapping belongs to 1-parameter family of invariants:

Let (M,g) and (N,h) be Riemannian manifolds:

Definition

The p-energy of a mapping F : (M,g)→ (N,h), p ≥ 1, is

Ep(F ) =
∫
M

|dF |pdVolM .

It follows from results of Brian White that there is a positive lower bound for the
p-energy of mappings homotopic to the identity of (HPN ,g0) for p ≥ 4 (and that there
isn’t for 1 ≤ p < 4).

However it follows from results of Wei in [Wei98] that the identity mapping of (HPN ,g0)
is not a stable critical point of the 4-energy.

In particular, the identity mapping of (HPN ,g0) is not 4-energy minimizing in its
homotopy class.

More generally, Wei’s results imply that the identity mapping of (HPN ,g0) is an
unstable critical point of the p-energy for 1 ≤ p < 2+ 4N

N+1 and a stable critical point for
p ≥ 2+ 4N

N+1 .
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p-energy-minimizing mappings of quaternionic projective space

The identity mapping of (HPN ,g0) is not 4-energy minimizing in its homotopy class.
However we have:

Theorem (H. [Hois21])

Let (HPN ,g0) be the quaternionic projective space with its canonical Riemannian
metric, with N ≥ 2, and F : (HPN ,g0)→ (M,g) a non-constant mapping to a
Riemannian manifold.

Let B⋆ be the minimum mass of an integral 4-current representing the class of F∗(HP1)
in H4(M;Z).

Then for all p ≥ 4,

Ep(F )>
π2N

(2N +1)!
(KNB⋆)

p
4 . (7)

In (7), KN = 32N2(2N+1)
π2(2N−1)

.
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Some Questions

Questions:

For mappings F : (CPN , g̃)→ (M,g) which realize equality in the results above for
N ≥ 3, is F ∗g Kähler?

What are optimal lower bounds for the p-energy of mappings
F : (HPN ,g0)→ (M,g) for p ≥ 4?

For which p ≥ 2+ 4N
N+1 does the identity mapping of (HPN ,g0) minimize p-energy

in its homotopy class?

(The identity mapping of any closed Riemannian n-manifold minimizes p-energy in
its homotopy class for p ≥ n.)

How can we characterize p-energy minimizing, or approximately p-energy
minimizing, families of maps of (HPN ,g0)?
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