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e Introduction: minimal surfaces in R3 and the Bernstein problem.
® The stable Bernstein problem.
e A result of Schoen-Simon-Yau (1975).

The stable Bernstein problem in R*: a new proof.

e A second result on finite index minimal hypersurfaces in positively curved closed
manifolds.
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Minimal surfaces in R3

Minimal surface: M2 C R3 is a critical point of the area functional A, for all
compactly supported variations, i.e.

Equivalently:
e M?2 is minimal <=> the mean curvature H = 0;

e M? is minimal <= M? can be expressed, locally, as the graph '(u), where u
solves the minimal surfaces equation:

di Vu 0
1v R — =
V1+[Vul]?



Minimal surfaces in R3

Classical examples: planes, catenoids, elicoids.

3

19th century examples (golden age): Schwarz minimal surfaces, Enneper surface,
Henneberg surface, Bour's minimal surface, Neovius surface.
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Modern examples: Gyroid, Costa’s minimal surface, Chen-Gackstatter surface.




The Bernstein problem |

Theorem gBernstein, 1914]
Let u € C?(R?) be a solution of

v <\/1j”7w|2> =0 inR?.
Then u is an affine function, i.e.
u(x,y) = ax+ By +7,
for some o, B,y € R.
Equivalently

An entire (i.e. defined on the whole plane Rz) minimal graph in R3 is necessarily a
plane.

The proof is based on a Liouville-type theorem for elliptic (not uniformly elliptic)
operators, which holds true only in dimension 2.
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Bernstein problem in higher dimension: an entire minimal graph in R"*1 is
necessarily a hyperplane?

It resisted for a half-century and was solved thanks to the combined effort of:

Fleming (1965): new proof in the case n = 2;
e De Giorgi (1965): n=3;

Almgren (1966): n = 4;

Simons (1968): n < 7,

Their proofs are not based on Liouville-type theorems but on tools in Geometric
Measure Theory.

Moreover

® Bombieri-De Giorgi-Giusti (1969): for n > 8, there are minimal entire graphs that
are not hyperplanes.



A natural direction of investigation

Two remarks:

e A minimal graph is area-minimizing: i.e. it is not only a critical point of the area
functional, but also a minimum.

This is not true for general minimal hypersurfaces (that are not graphic).

® Area-minimizing implies stability, that is

d2
72 -At 2 07
dt? |,

for all compactly supported variations.

Stable Bernstein problem: if M" — R"*! is a complete, orientable, immersed, stable
minimal hypersurface, does M have to be necessarily a hyperplane?



The stable Bernstein problem

Stable Bernstein problem: if M" — R"*! is a complete, orientable, immersed, stable
minimal hypersurface, does M have to be necessarily a hyperplane?

True if n = 2: do Carmo-Peng (1979)., Fischer-Colbrie-Schoen (1980), Pogorelov
(1981);

False if n > 7: if n > 8, Bombieri-De Giorgi-Giusti (1969) constructed non-flat,
orientable, complete, stable, minimal hypersurfaces (graphs) in R"*1, n > 8.
Moreover, if n > 7, there exist non-flat area minimizing (not graphs) smooth
hypersurfaces constructed by Hardt-Simon (1985).

Other dimensions? Schoen-Simon-Yau (1975): true if n < 5 and Euclidean
volume growth assumption

Vol(Bg) < CR".
Further interesting/partial results: Schoen-Yau (1979), do Carmo-Peng (1982),

Bérard (1991), Palmer (1991), Miyaoka (1993), Tanno (1996), Cao-Shen-Zhu
(1997), Shen-Zhu (1998), Chen (2001), Nelli-Soret (2007).

True if n = 3: Chodosh-Li (2021) and C., Mastrolia, Roncoroni (2022).



The stable Bernstein problem in R*

Theorem [Chodosh-Li (2021) and C.-Mastrolia-Roncoroni (2022)]
A complete, orientable, immersed, stable minimal hypersurface M® — R* is a
hyperplane.

Stable minimal hypersurface: M is minimal iff the mean curvature H = 0; in this case
we say that M is stable if

[ 1A < [ 1VeR, forallp e g (M)
M M
where A = Ay, denotes the second fundamental form of M.

Remark: stability means non-negativity of the second variation, or, equivalently,
non-positivity of the so-called Jacobi operator

A+ AP,



The stable Bernstein problem in R*

Theorem [Chodosh-Li (2021) and C.-Mastrolia-Roncoroni (20222]
A complete, orientable, immersed, stable minimal hypersurface M> — R js a
hyperplane.

Main idea: use a weighted volume comparison for a suitable conformal metric,
together with a new weighted integral estimate.

Inspiring papers: Schoen-Simon-Yau (1975), Fischer-Colbrie (1985),
Elbert-Nelli-Rosenberg (2007).

Before going into the proof, | will give you a 3-slides complete proof of
Schoen-Simon-Yau (1975) result on stable minimal hypersurface M" — R p <5,
satisfying the volume assumption

Vol(Bg) < CR".



Proof of Schoen-Simon-Yau (1975) |

Take a complete, orientable, immersed, stable minimal hypersurface M" — R"1. We
have

Japet < [ 9o, torall o € (M),

We test it with ¢ = |A[}T9y, g > 0, with ¢ € C§°(M), obtaining

14+q
Az < arap <o [ apawiaEe + 2 [ japsvr,

for every € > 0, where we used Young's inequality. On the other hand, using the
Codazzi equation
vaij = VjA,'k

and Gauss equation, we get the well known Simons’ identity for minimal hypersurfaces
in Rn+1

%A|A|2 = |VA? — A%

Moreover, since A is a Codazzi tensor, we have the improved Kato's inequality
VAP > "2 vl

Combining these, we obtain

2
AIAJA] + |A* > ;\VIA||2~



Proof of Schoen-Simon-Yau (1975) Il

Multiplying it by |A|?942 and integrating by parts, we get

2 1
(7+1+2q76)/ |A\2"|V\A|\2w2§/ |A|4+2qw2+7/ |A[2+249) 7|2
n M M gJMm

for every € > 0, where we used again Young's inequality. Since ¢ > 0, fore > 0
sufficiently small, combining these two estimates we obtain

5 -1
{1 —[(1+9)7+e] (f +1 +2q—s) }/ A2y < C/ |A[ZF29| T2,
n M M
Let g := %74. For £ > 0 small enough, we have
5 -1
1-[(1+q)?+¢ (;+1+2q—8) >0
if p € [4,4+ 1/8/n] and we finally obtain
[1are <c [ 1ap2vep v e g m.
M M
Taking ¢ = ¢P/2, by Holder's inequality, we get
[1are <c [ jvop  voecEm)
M M

for all p € [4,4+ /8/n].



Proof of Schoen-Simon-Yau (1975) Il

[1are<c [ 9o voe )

M M

for all p € [4,4 + \/8/n]. In particular, if n <5, we can take p =5 + §, for some

6 > 0 small. Let xop € M", and let r denotes the distance function from xg. We choose
¢ :=mn(r),

where 0 <n <1, n=1o0n[0,R],7=0o0n [2R,00) and |n/| < %, for some C,R > 0.

Plugging in the previous estimate, form every R > 0, we obtain

C
A5+6 5+6<C v 5+6< Vol(B < =
[ et < 0 [T S s VollBam) <

where we used the Euclidean volume growth assumption. Since § > 0, letting
R — o0, we get

|[Al=0 on M",

and this concludes the proof. O



Proof of the stable Bernstein problem in R*

Theorem [Chodosh-Li (2021) and C.-Mastrolia-Roncoroni (20223)]
A complete, orientable, immersed, stable minimal hypersurface M® — R* is a
hyperplane.

Idea of the proof:
e Step 1: construct g conformal to g such that
N A 2, 1
RICE = Rlcg +V§f— 2df®df >0.
e Step 2: prove that g is complete.
e Step 3: we obtain a weighted Bishop-Gromov volume estimate:
Volg (Bg) = /BE e~'dV; < CR¥2 = CRS. (1)
R

e Step 4: prove a weighted integral estimate as in SSY
e Step 5: use a cutoff function ¢ = n(¥) to conclude that

|Al=0 on M5



Step 1: the conformal change of the metric

It is well-known that the stability of M" < R™1 implies the existence of
0 < u € C*>°(M) satisfying

—Dgu=|AZu in M,
where g denotes the induced metric on M.

Let k > 0 and consider the conformal metric

g =uv¥g.

Lemma
Let f = k(n — 2)log u. Then the Ricci tensor of the metric g satisfies

. 1—k(n—2)
2
RlC‘E—i_vgf_k(ni —2)?

-1
df ® df > (k - L) Al2g.
n
In particular, if n =3 and k = % then the 2-Bakry-Emery-Ricci tensor satisfies

1
L2 e 2, 4
RICE = RlcngVEf 2df®df20.



Sketch of the proof: since f = k(n — 2) log u, we have

d Viu  du®d
df =k(n—2)=  and V2f =k(n —2)< ”®2 ”),
u u

which implies
Agf = k(n—2) <

On the other hand, from the standard formulas for a conformal change of the metric
g =¢e*g, 0< € C®(M), we get

Ricz = Ricg — (n —2) (V¢ — do ®@ dp) — [Agp+ (n—2)|VeolZ] &

Agu_ |Veuly
u u? )

and
Vif = Vif —(df @ dp) +g(Vef, Vep)g .

In our case ¢ = klogu and u solves —Agu = |A\§u, thus

df ® df |Vef|2

Ricg —i—V f = Ricg — —5 + k\A|g mg




From Cauchy-Schwarz inequality we have
|Veflig > df @ df
and from Gauss equation in the minimal case we know that
Ricg = —A?
and since A is traceless we also have the inequality
A% < n%l\Alﬁg
Substituting in

df ® df Vf|2
T Apg+ el o
k(n—12)

Ricg + V3f = Ricg —

we conclude
1—k(n—-2)

: 2
Ricg + ng — W

-1
df ® df > (k - L) A2g
n



Step 2: completeness of g

From now on, we take

and 0 < u € C*°(M) solution of
—Agu = |A|éu in M.

Lemma .
The metric g = u3 g is complete.
Sketch of the proof: as shown in Fischer-Colbrie (1985), one can construct a

minimizing geodesic in the metric & = u?fg, v = 7(s), where s is the g—arclength.
By construction, the completeness of g is equivalent to prove that « has infinite

g—length, i.e.
+o0
/dE:/ UK ((s)) ds = +o0.
y 0

Since « is minimizing, by the second variation formula
oo ~
[T =02 - Rus?] a5 20, vee (0. 4o0)
0

where ﬁu denotes the g—Ricci curvature in the direction ~;.



Using the formula for the conformal change of the Ricci curvature, some integration
by parts (cfr. Elbert-Nelli-Rosenberg (2007)) and controlling the |A|? terms, we get

+o0 +o00o
(n— 1)/ (ps)?u" ds > 2k(n — 2)/ ppsu*Lug ds
0 0
+o00
FR= ko =2)] [ ) ds,
0
for n > 3, for every ¢ € C5°(0,+c0) and for every k > "—;1

Now we choose ¢ = uky, with 1) € C§°(0,+00), we apply Young inequality, we
manipulate and we obtain, assuming k < 1

k(t — 1) oo 2 e
0< | ——— —2t+(n—1) u(s)” ds — 2t u“Pipss ds,
1—k 0 0
forevery t >1. If n=23, k= ";1 = % and t = % we have that
k(t —1)?
— 2t —-1)<0,
Tk +(n—1)

hence,

+o0 +o00o
0< —/ u3 (1s)? ds—6/ uhss ds, W € CE°(0, +00).
0 0



Hence,
oo, too o o
ng/ u3(hs) dsf6/ usypssds, Vi € G50, +00).
0 0

Finally, we choose ¢ = sn, where n =1 in [0, R], n =0 in [2R,0), 0 <7 < 1 such
that

C C
nsl < = and  [nss| < 5.
R R2

R 5 ® 2 > 2
2 2 o 2
/ u3ds§/ u3n dsgC/ u3 ds,
0 0 R

and we conclude that
oo,
/ u3 ds = 4o00.
0

~ 4 _
l.e. the metric g = u3 g is complete. O

Then



Step 3: weighted volume estimate

~ 4

The two previous Lemmas imply that the metric g = u3 g is complete and has
non-negative 2-Bakry-Emery-Ricci curvature. Hence we obtain a weighted
Bishop-Gromov volume estimate for a geodesic ball B(xo).

Corollary
Let xo € M3. Then, for every R > 0, there exists C > 0 such that

Volg (Bg(x0)> = /N e~ dV; < CR5,
B

2 (x0)

where f = % log u. Equivalently, in terms of u and the volume form of g,
4 5
~ u3 dVg < CR>.
BE(x0)

Follows from well-known comparison results e.g. in Qian (1997), Lott (2003),
Bakry-Qian (2005), Wei-Wylie (2009).



Step 4: weighted integral estimate

We have seen that Schoen-Simon-Yau proved the following estimate

/M AP35+ v < C /M VO[S dv, Vg e CoH(M).

Lemma
For every § > 0 small enough, there exists C > 0 such that

/M JAIFH =275 ¢5+0 gy, < C/M U2 E Ve AV, Ve e CO(M).

Idea of the proof: from Schoen-Simon-Yau (1975) proof
[1are <c [ 1aP2vep v e ),
M M
for every p € [4,4 + /8/n] and for some C > 0. We test this inequality with
b =u*g, ¢ € C§°(M), with u the positive solution to
—Au = |Au

and a < 0. Using this equation and Simons’ identity, after some estimates, we get the
result. O



Step 4: the final estimate

Proof of the stable Bernstein Theorem:
let xo € M3, and let 7 denotes the distance function from xp with respect to the
metric g = u%g. We choose

¢ =n(F),
where 0 <n<1,n=1on[0,R], =0 o0n [2R,00) and |n’| < %, for some C,R > 0.
From the weighted integral estimate, we have

Japtu B o av < o [ wrt ¥ vegay

2(5+5) ~

— C/ —2— 25+ |V¢‘5+5 dVg

< / u' dVg
R5+6 BfR(X )

C
= ﬁ )
we used that |VF]z = 1). Since § > 0, letting R — oo, we get
g
|Al=0 on M3,

and this concludes the proof. O



Comments and remarks

® The cases n = 4,5,6 are open.

e The proof by Chodosh-Li (2021) is based on the non-parabolicity of M> (i.e. M3
admits a positive Green's function G for the Laplacian). They perform careful
estimates of the quantity:

F(t) ::/Z VeGP,

where X ; is the t—level set of G (these are 2—dimensional). The estimates seem
to work only in dimension n = 3. They finally test the stability inequality derived
by Schoen-Simon-Yau with ¢ = n(G) to get rigidity.

e We used a different approach which seems suitable to be adapted also to other
dimensions.

e We think this conformal method can be applied for other problems. For instance,
very recently we managed to prove the following:
Theorem [C.-Mastrolia-Monticelli, in preparation]
Let (M",g), n > 10, be a complete critical metric of the functional

&? :/Rgdvg

with finite energy, i.e. Ry € L>(M™). Then (M",g) is scalar flat, and thus a
global minimum of the functional &2.



Our second result |

This conformal deformation can be applied also in the case of minimal immersion
M" — (X1 h) with finite index, i.e. the number of negative eigenvalues (counted
with multiplicity) of the Jacobi operator

A+ |AP? 4 Rich(v,v),

on every compact domain in M (with Dirichlet boundary conditions) is finite (v is a
unit normal vector to M in X).

Remark: stability => finite (zero) index.

Theorem [C.-Mastrolia-Roncoroni (2022)]
If (X™1 h) is a closed (n + 1)—dimensional manifold with n <5 and such that

Secp, >0 and Ricp, >0.

Then every complete, orientable, immersed, minimal hypersurface M" — (X 1l h)
with finite index must be compact.

Corollary
Under the assumptions of the previous theorem, there is no complete, orientable,
stable minimal hypersurface M" — (X"*1, h).
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Corollary
Under the assumptions of the previous theorem, there is no complete, orientable,
stable minimal hypersurface M" — (X"+1 h).

In particular, there is no complete, orientable, stable minimal hypersurface of the
round spheres M" < (S"*1 g.q), provided n < 5.

e If n=2: known and follows from Schoen-Yau (1982);

e if n = 3: known and follows by a recent result by Chodosh-Li-Striker (2022);
e if n=4,5: new (?!);

e if n > 5: open (?!).



Our second result: idea of the proof |

Theorem [C.-Mastrolia-Roncoroni (2022)]
If (X" h) is a closed (n + 1)—dimensional manifold with n <5 and such that

Secp, >0 and Ricp, >0.

Then every complete, orientable, immersed, minimal hypersurface M" — (X"*1, h)
with finite index must be compact.

Proof. Suppose, by contradiction, that M is non-compact. Then, there exist
0< u€ C>®(M)and K C M compact subset such that

—Au= [|A|2 + Ricp(v,v)]u  in M\ K.
Let kK > 0 and consider the conformal metric
g=u"g,
where g is the induced metric on M. As shown in Fischer-Colbrie (1985), one can

construct a minimizing geodesic in the metric g = u?*g, v = v(s) : [0,00) = M\ K,
where s is the g—arclength, such that it has infinite length in the metric g.



Our second result: idea of the proof Il

By the second variation formula (cfr. Elbert-Nelli-Rosenberg (2007))

(= /oa(‘ps)2 ds > k(n—3) /0 s ds

k[4—k(n—1 Z
M/ 5 ds+/ kRich(v,v) + > Rl | ds

j=2

a n
+/0 @ | KIAP — AL = > AL | ds,
j=2

for every smooth function ¢ such that ¢(0) = ¢(a) = 0 and for every k > 0. Since
Secp > 0 and Ricp(v,v) > Ry > 0, we obtain

(n—1)/oa(%)z ds > k(n—3)/oagogpsu—; ds

. k[4fk4(n71)] /:“"2 (Z)Z

a n
+/ ¢ | kRo + K|A? — A7, — > A% | ds.
0 "
j=2
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Being A trace-free and choosing k = "%1, we get

a —_3 ra 6n—n®>—1 [2 2
/(sos)zdszn—/ <p<ps£ds+L/ ¢ (5) ds
0 n Jo u 4n? 0 u
R a
+—0/ @st.
n Jo

6n—n?—1
4n2
moreover, there exists C > 0 such that
. - 34@%% > —dop? (%)2 — C(ps).
Therefore, there exists C > 0 such that

a R a
c/ (gos)2d52—0/ ©*ds
0 n Jo

for every smooth function ¢ such that ¢(0) = ¢(a) = 0.

If n <5, we have

>0 > 0,
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Integrating by parts we obtain
a
/ (¢pss + CRop?) ds < 0.
0

Choosing ¢(s) = sin(rsa~1), s € [0, a] one has

7.(2 a
(CRO — —2> / sin?(rsa~l)ds <0
a 0

2
a? < I
— CRy
We conclude that the length (in the metric g) of the geodesic ¥(s) is finite and this
gives a contradiction. Therefore (M", g) must be compact and this concludes the

proof.



Our second result: idea of the proof V

Corollary
Under the assumptions of the previous theorem, there is no complete, orientable,
stable minimal hypersurface M" — (X" h).

Proof. If M is stable, by the previous Theorem it must be compact. Moreover, there
exists 0 < u € C*°(M) such that

—Au= [|A|2 + Ricp(v, y)] u in M.

Integrating over M we get a contradiction, since Ric, > 0. Equivalently, one can use
f =1 in the stability inequality to get a contradiction.
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