Two rigidity results for stable minimal hypersurfaces

Giovanni Catino

Politecnico di Milano

Geometric Analysis, Regensburg
March 11, 2023

Outline

Outline:

- Introduction: minimal surfaces in \mathbb{R}^{3} and the Bernstein problem.
- The stable Bernstein problem.
- A result of Schoen-Simon-Yau (1975).
- The stable Bernstein problem in \mathbb{R}^{4} : a new proof.
- A second result on finite index minimal hypersurfaces in positively curved closed manifolds.

Bibliography:

- G. C., P. Mastrolia, A. Roncoroni, Two rigidity results for stable minimal hypersurfaces, 2022 submitted.

Minimal surface: $M^{2} \subset \mathbb{R}^{3}$ is a critical point of the area functional \mathcal{A}_{t}, for all compactly supported variations, i.e.

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}_{t}=0
$$

Equivalently:

- M^{2} is minimal \Longleftrightarrow the mean curvature $H \equiv 0$;
- M^{2} is minimal $\Longleftrightarrow M^{2}$ can be expressed, locally, as the graph $\Gamma(u)$, where u solves the minimal surfaces equation:

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 .
$$

Classical examples: planes, catenoids, elicoids.

19th century examples (golden age): Schwarz minimal surfaces, Enneper surface, Henneberg surface, Bour's minimal surface, Neovius surface.

Modern examples: Gyroid, Costa's minimal surface, Chen-Gackstatter surface.

Theorem [Bernstein, 1914]

Let $u \in C^{2}\left(\mathbb{R}^{2}\right)$ be a solution of

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \quad \text { in } \mathbb{R}^{2} .
$$

Then u is an affine function, i.e.

$$
u(x, y)=\alpha x+\beta y+\gamma
$$

for some $\alpha, \beta, \gamma \in \mathbb{R}$.
Equivalently
An entire (i.e. defined on the whole plane \mathbb{R}^{2}) minimal graph in \mathbb{R}^{3} is necessarily a plane.

The proof is based on a Liouville-type theorem for elliptic (not uniformly elliptic) operators, which holds true only in dimension 2.

Bernstein problem in higher dimension: an entire minimal graph in \mathbb{R}^{n+1} is necessarily a hyperplane?

It resisted for a half-century and was solved thanks to the combined effort of:

- Fleming (1965): new proof in the case $n=2$;
- De Giorgi (1965): $n=3$;
- Almgren (1966): $n=4$;
- Simons (1968): $n \leq 7$;

Their proofs are not based on Liouville-type theorems but on tools in Geometric Measure Theory.
Moreover

- Bombieri-De Giorgi-Giusti (1969): for $n \geq 8$, there are minimal entire graphs that are not hyperplanes.

A natural direction of investigation

Two remarks:

- A minimal graph is area-minimizing: i.e. it is not only a critical point of the area functional, but also a minimum.

This is not true for general minimal hypersurfaces (that are not graphic).

- Area-minimizing implies stability, that is

$$
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} \mathcal{A}_{t} \geq 0
$$

for all compactly supported variations.

Stable Bernstein problem: if $M^{n} \hookrightarrow \mathbb{R}^{n+1}$ is a complete, orientable, immersed, stable minimal hypersurface, does M have to be necessarily a hyperplane?

Stable Bernstein problem: if $M^{n} \hookrightarrow \mathbb{R}^{n+1}$ is a complete, orientable, immersed, stable minimal hypersurface, does M have to be necessarily a hyperplane?

- True if $n=2$: do Carmo-Peng (1979)., Fischer-Colbrie-Schoen (1980), Pogorelov (1981);
- False if $n \geq 7$: if $n \geq 8$, Bombieri-De Giorgi-Giusti (1969) constructed non-flat, orientable, complete, stable, minimal hypersurfaces (graphs) in $\mathbb{R}^{n+1}, n \geq 8$. Moreover, if $n \geq 7$, there exist non-flat area minimizing (not graphs) smooth hypersurfaces constructed by Hardt-Simon (1985).
- Other dimensions? Schoen-Simon-Yau (1975): true if $n \leq 5$ and Euclidean volume growth assumption

$$
\operatorname{Vol}\left(B_{R}\right) \leq C R^{n}
$$

- Further interesting/partial results: Schoen-Yau (1979), do Carmo-Peng (1982), Bérard (1991), Palmer (1991), Miyaoka (1993), Tanno (1996), Cao-Shen-Zhu (1997), Shen-Zhu (1998), Chen (2001), Nelli-Soret (2007).
- True if $n=3$: Chodosh-Li (2021) and C., Mastrolia, Roncoroni (2022).

Theorem [Chodosh-Li (2021) and C.-Mastrolia-Roncoroni (2022)]
A complete, orientable, immersed, stable minimal hypersurface $M^{3} \hookrightarrow \mathbb{R}^{4}$ is a hyperplane.

Stable minimal hypersurface: M is minimal iff the mean curvature $H \equiv 0$; in this case we say that M is stable if

$$
\int_{M}|A|^{2} \varphi^{2} \leq \int_{M}|\nabla \varphi|^{2}, \quad \text { for all } \varphi \in C_{0}^{\infty}(M)
$$

where $A=A_{M}$ denotes the second fundamental form of M.
Remark: stability means non-negativity of the second variation, or, equivalently, non-positivity of the so-called Jacobi operator

$$
\Delta+|A|^{2} .
$$

The stable Bernstein problem in \mathbb{R}^{4}

Theorem [Chodosh-Li (2021) and C.-Mastrolia-Roncoroni (2022)]
A complete, orientable, immersed, stable minimal hypersurface $M^{3} \hookrightarrow \mathbb{R}^{4}$ is a hyperplane.

Main idea: use a weighted volume comparison for a suitable conformal metric, together with a new weighted integral estimate.

Inspiring papers: Schoen-Simon-Yau (1975), Fischer-Colbrie (1985), Elbert-Nelli-Rosenberg (2007).

Before going into the proof, I will give you a 3-slides complete proof of Schoen-Simon-Yau (1975) result on stable minimal hypersurface $M^{n} \hookrightarrow \mathbb{R}^{n+1}, n \leq 5$, satisfying the volume assumption

$$
\operatorname{Vol}\left(B_{R}\right) \leq C R^{n} .
$$

Proof of Schoen-Simon-Yau (1975) I

Take a complete, orientable, immersed, stable minimal hypersurface $M^{n} \hookrightarrow \mathbb{R}^{n+1}$. We have

$$
\int_{M}|A|^{2} \varphi^{2} \leq \int_{M}|\nabla \varphi|^{2}, \quad \text { for all } \varphi \in C_{0}^{\infty}(M)
$$

We test it with $\varphi=|A|^{1+q} \psi, q \geq 0$, with $\psi \in C_{0}^{\infty}(M)$, obtaining

$$
\int_{M}|A|^{4+2 q} \psi^{2} \leq\left[(1+q)^{2}+\varepsilon\right] \int_{M}|A|^{2 q}|\nabla| A| |^{2} \psi^{2}+\frac{1+q}{\varepsilon} \int_{M}|A|^{2+2 q}|\nabla \psi|^{2},
$$

for every $\varepsilon>0$, where we used Young's inequality. On the other hand, using the Codazzi equation

$$
\nabla_{k} A_{i j}=\nabla_{j} A_{i k}
$$

and Gauss equation, we get the well known Simons' identity for minimal hypersurfaces in \mathbb{R}^{n+1}

$$
\frac{1}{2} \Delta|A|^{2}=|\nabla A|^{2}-|A|^{4}
$$

Moreover, since A is a Codazzi tensor, we have the improved Kato's inequality

$$
|\nabla A|^{2} \geq \frac{n+2}{n}|\nabla| A| |^{2}
$$

Combining these, we obtain

$$
|A| \Delta|A|+|A|^{4} \geq \frac{2}{n}|\nabla| A| |^{2}
$$

Proof of Schoen-Simon-Yau (1975) II

Multiplying it by $|A|^{2 q} \psi^{2}$ and integrating by parts, we get

$$
\left(\frac{2}{n}+1+2 q-\varepsilon\right) \int_{M}|A|^{2 q}|\nabla| A| |^{2} \psi^{2} \leq \int_{M}|A|^{4+2 q} \psi^{2}+\frac{1}{\varepsilon} \int_{M}|A|^{2+2 q}|\nabla \psi|^{2}
$$

for every $\varepsilon>0$, where we used again Young's inequality. Since $q \geq 0$, for $\varepsilon>0$ sufficiently small, combining these two estimates we obtain

$$
\left\{1-\left[(1+q)^{2}+\varepsilon\right]\left(\frac{2}{n}+1+2 q-\varepsilon\right)^{-1}\right\} \int_{M}|A|^{4+2 q} \psi^{2} \leq C \int_{M}|A|^{2+2 q}|\nabla \psi|^{2}
$$

Let $q:=\frac{p-4}{2}$. For $\varepsilon>0$ small enough, we have

$$
1-\left[(1+q)^{2}+\varepsilon\right]\left(\frac{2}{n}+1+2 q-\varepsilon\right)^{-1}>0
$$

if $p \in[4,4+\sqrt{8 / n}]$ and we finally obtain

$$
\int_{M}|A|^{p} \psi^{2} \leq C \int_{M}|A|^{p-2}|\nabla \psi|^{2} \quad \forall \psi \in C_{0}^{\infty}(M)
$$

Taking $\psi=\phi^{p / 2}$, by Holder's inequality, we get

$$
\int_{M}|A|^{p} \phi^{p} \leq C \int_{M}|\nabla \phi|^{p} \quad \forall \phi \in C_{0}^{\infty}(M)
$$

for all $p \in[4,4+\sqrt{8 / n}]$.

$$
\int_{M}|A|^{p} \phi^{p} \leq C \int_{M}|\nabla \phi|^{p} \quad \forall \phi \in C_{0}^{\infty}(M)
$$

for all $p \in[4,4+\sqrt{8 / n}]$. In particular, if $n \leq 5$, we can take $p=5+\delta$, for some $\delta>0$ small. Let $x_{0} \in M^{n}$, and let r denotes the distance function from x_{0}. We choose

$$
\phi:=\eta(r),
$$

where $0 \leq \eta \leq 1, \eta=1$ on $[0, R], \eta=0$ on $[2 R, \infty)$ and $\left|\eta^{\prime}\right| \leq \frac{C}{R}$, for some $C, R>0$. Plugging in the previous estimate, form every $R>0$, we obtain

$$
\int_{M}|A|^{5+\delta} \eta^{5+\delta} \leq C \int_{B_{2 R} \backslash B_{R}}|\nabla \eta|^{5+\delta} \leq \frac{C}{R^{5+\delta}} \operatorname{Vol}\left(B_{2 R}\right) \leq \frac{C}{R^{\delta}}
$$

where we used the Euclidean volume growth assumption. Since $\delta>0$, letting $R \rightarrow \infty$, we get

$$
|A| \equiv 0 \quad \text { on } M^{n},
$$

and this concludes the proof.

Proof of the stable Bernstein problem in \mathbb{R}^{4}

Theorem [Chodosh-Li (2021) and C.-Mastrolia-Roncoroni (2022)]
A complete, orientable, immersed, stable minimal hypersurface $M^{3} \hookrightarrow \mathbb{R}^{4}$ is a hyperplane.

Idea of the proof:

- Step 1: construct \tilde{g} conformal to g such that

$$
\operatorname{Ric}_{\widetilde{g}}^{2, f}:=\operatorname{Ric}_{\widetilde{g}}+\nabla_{\widetilde{g}}^{2} f-\frac{1}{2} d f \otimes d f \geq 0
$$

- Step 2: prove that \widetilde{g} is complete.
- Step 3: we obtain a weighted Bishop-Gromov volume estimate:

$$
\begin{equation*}
\operatorname{Vol}_{f}\left(B_{R}^{\tilde{g}}\right):=\int_{B_{R}^{\widetilde{g}}} e^{-f} d V_{\widetilde{g}} \leq C R^{3+2}=C R^{5} \tag{1}
\end{equation*}
$$

- Step 4: prove a weighted integral estimate as in SSY
- Step 5: use a cutoff function $\phi=\eta(\tilde{r})$ to conclude that

$$
|A| \equiv 0 \quad \text { on } M^{3}
$$

Step 1: the conformal change of the metric

It is well-known that the stability of $M^{n} \hookrightarrow \mathbb{R}^{n+1}$ implies the existence of $0<u \in C^{\infty}(M)$ satisfying

$$
-\Delta_{g} u=|A|_{g}^{2} u \quad \text { in } M
$$

where g denotes the induced metric on M.
Let $k>0$ and consider the conformal metric

$$
\tilde{g}=u^{2 k} g
$$

Lemma

Let $f=k(n-2) \log u$. Then the Ricci tensor of the metric \widetilde{g} satisfies

$$
\operatorname{Ric}_{\widetilde{g}}+\nabla_{\widetilde{g}}^{2} f-\frac{1-k(n-2)}{k(n-2)^{2}} d f \otimes d f \geq\left(k-\frac{n-1}{n}\right)|A|_{g}^{2} g .
$$

In particular, if $n=3$ and $k=\frac{2}{3}$, then the 2-Bakry-Emery-Ricci tensor satisfies

$$
\operatorname{Ric}_{\widetilde{g}}^{2, f}:=\operatorname{Ric}_{\widetilde{g}}+\nabla_{\widetilde{g}}^{2} f-\frac{1}{2} d f \otimes d f \geq 0
$$

Sketch of the proof: since $f=k(n-2) \log u$, we have

$$
d f=k(n-2) \frac{d u}{u} \quad \text { and } \quad \nabla_{g}^{2} f=k(n-2)\left(\frac{\nabla_{g}^{2} u}{u}-\frac{d u \otimes d u}{u^{2}}\right)
$$

which implies

$$
\Delta_{g} f=k(n-2)\left(\frac{\Delta_{g} u}{u}-\frac{\left|\nabla_{g} u\right|_{g}^{2}}{u^{2}}\right) .
$$

On the other hand, from the standard formulas for a conformal change of the metric $\widetilde{g}=e^{2 \varphi} g, 0<\varphi \in C^{\infty}(M)$, we get

$$
\operatorname{Ric}_{\widetilde{g}}=\operatorname{Ric}_{g}-(n-2)\left(\nabla^{2} \varphi-d \varphi \otimes d \varphi\right)-\left[\Delta_{g} \varphi+(n-2)\left|\nabla_{g} \varphi\right|_{g}^{2}\right] g
$$

and

$$
\nabla_{\widetilde{g}}^{2} f=\nabla_{g}^{2} f-(d f \otimes d \varphi)+g\left(\nabla_{g} f, \nabla_{g} \varphi\right) g
$$

In our case $\varphi=k \log u$ and u solves $-\Delta_{g} u=|A|_{g}^{2} u$, thus

$$
\operatorname{Ric}_{\tilde{g}}+\nabla_{\tilde{g}}^{2} f=\operatorname{Ric}_{g}-\frac{d f \otimes d f}{n-2}+k|A|_{g}^{2} g+\frac{\left|\nabla_{g} f\right|_{g}^{2}}{k(n-2)} g
$$

From Cauchy-Schwarz inequality we have

$$
\left|\nabla_{g} f\right|_{g}^{2} g \geq d f \otimes d f
$$

and from Gauss equation in the minimal case we know that

$$
\operatorname{Ric}_{g}=-A^{2}
$$

and since A is traceless we also have the inequality

$$
A^{2} \leq \frac{n-1}{n}|A|_{g}^{2} g .
$$

Substituting in

$$
\operatorname{Ric}_{\widetilde{g}}+\nabla_{\widetilde{g}}^{2} f=\operatorname{Ric}_{g}-\frac{d f \otimes d f}{n-2}+k|A|_{g}^{2} g+\frac{\left|\nabla_{g} f\right|_{g}^{2}}{k(n-2)} g
$$

we conclude

$$
\operatorname{Ric}_{\widetilde{g}}+\nabla_{\widetilde{g}}^{2} f-\frac{1-k(n-2)}{k(n-2)^{2}} d f \otimes d f \geq\left(k-\frac{n-1}{n}\right)|A|_{g}^{2} g .
$$

From now on, we take

$$
n=3, \quad k=\frac{2}{3}
$$

and $0<u \in C^{\infty}(M)$ solution of

$$
-\Delta_{g} u=|A|_{g}^{2} u \quad \text { in } M
$$

Lemma

The metric $\widetilde{g}=u^{\frac{4}{3}} g$ is complete.
Sketch of the proof: as shown in Fischer-Colbrie (1985), one can construct a minimizing geodesic in the metric $\widetilde{g}=u^{2 k} g, \gamma=\gamma(s)$, where s is the g-arclength. By construction, the completeness of \widetilde{g} is equivalent to prove that γ has infinite \widetilde{g}-length, i.e.

$$
\int_{\gamma} d \widetilde{s}=\int_{0}^{+\infty} u^{k}(\gamma(s)) d s=+\infty
$$

Since γ is minimizing, by the second variation formula

$$
\int_{0}^{\infty}\left[(n-1)\left(\varphi_{\widetilde{s}}\right)^{2}-\widetilde{R}_{11} \varphi^{2}\right] d \widetilde{s} \geq 0, \quad \forall \varphi \in C_{0}^{\infty}(0,+\infty)
$$

where \widetilde{R}_{11} denotes the \tilde{g}-Ricci curvature in the direction $\gamma_{\widetilde{s}}$.

Using the formula for the conformal change of the Ricci curvature, some integration by parts (cfr. Elbert-Nelli-Rosenberg (2007)) and controlling the $|A|^{2}$ terms, we get

$$
\begin{aligned}
(n-1) \int_{0}^{+\infty}\left(\varphi_{s}\right)^{2} u^{-k} d s \geq & 2 k(n-2) \int_{0}^{+\infty} \varphi \varphi_{s} u^{-k-1} u_{s} d s \\
& +k[1-k(n-2)] \int_{0}^{+\infty} \varphi^{2} u^{-k-2}\left(u_{s}\right)^{2} d s
\end{aligned}
$$

for $n \geq 3$, for every $\varphi \in C_{0}^{\infty}(0,+\infty)$ and for every $k \geq \frac{n-1}{n}$.
Now we choose $\varphi=u^{k} \psi$, with $\psi \in C_{0}^{\infty}(0,+\infty)$, we apply Young inequality, we manipulate and we obtain, assuming $k<1$

$$
0 \leq\left[\frac{k(t-1)^{2}}{1-k}-2 t+(n-1)\right] \int_{0}^{+\infty} u^{k}\left(\psi_{s}\right)^{2} d s-2 t \int_{0}^{+\infty} u^{k} \psi \psi_{s s} d s
$$

for every $t>1$. If $n=3, k=\frac{n-1}{n}=\frac{2}{3}$ and $t=\frac{3}{2}$ we have that

$$
\frac{k(t-1)^{2}}{1-k}-2 t+(n-1)<0
$$

hence,

$$
0 \leq-\int_{0}^{+\infty} u^{\frac{2}{3}}\left(\psi_{s}\right)^{2} d s-6 \int_{0}^{+\infty} u^{\frac{2}{3}} \psi \psi_{s s} d s, \quad \forall \psi \in C_{0}^{\infty}(0,+\infty)
$$

Hence,

$$
0 \leq-\int_{0}^{+\infty} u^{\frac{2}{3}}\left(\psi_{s}\right)^{2} d s-6 \int_{0}^{+\infty} u^{\frac{2}{3}} \psi \psi_{s s} d s, \quad \forall \psi \in C_{0}^{\infty}(0,+\infty) .
$$

Finally, we choose $\psi=s \eta$, where $\eta=1$ in $[0, R], \eta=0$ in $[2 R, \infty), 0 \leq \eta \leq 1$ such that

$$
\left|\eta_{s}\right| \leq \frac{C}{R} \quad \text { and } \quad\left|\eta_{s s}\right| \leq \frac{C}{R^{2}}
$$

Then

$$
\int_{0}^{R} u^{\frac{2}{3}} d s \leq \int_{0}^{\infty} u^{\frac{2}{3}} \eta^{2} d s \leq C \int_{R}^{\infty} u^{\frac{2}{3}} d s
$$

and we conclude that

$$
\int_{0}^{+\infty} u^{\frac{2}{3}} d s=+\infty
$$

I.e. the metric $\widetilde{g}=u^{\frac{4}{3}} g$ is complete.

Step 3: weighted volume estimate

The two previous Lemmas imply that the metric $\widetilde{g}=u^{\frac{4}{3}} g$ is complete and has non-negative 2-Bakry-Emery-Ricci curvature. Hence we obtain a weighted Bishop-Gromov volume estimate for a geodesic ball $B_{R}^{\widetilde{g}}\left(x_{0}\right)$.

Corollary

Let $x_{0} \in M^{3}$. Then, for every $R>0$, there exists $C>0$ such that

$$
\operatorname{Vol}_{f}\left(B_{R}^{\widetilde{g}}\left(x_{0}\right)\right):=\int_{B_{R}^{\widetilde{g}}\left(x_{0}\right)} e^{-f} d V_{\widetilde{g}} \leq C R^{5}
$$

where $f=\frac{2}{3} \log u$. Equivalently, in terms of u and the volume form of g,

$$
\int_{B_{R}^{\tilde{g}}\left(x_{0}\right)} u^{\frac{4}{3}} d V_{g} \leq C R^{5}
$$

Follows from well-known comparison results e.g. in Qian (1997), Lott (2003), Bakry-Qian (2005), Wei-Wylie (2009).

We have seen that Schoen-Simon-Yau proved the following estimate

$$
\int_{M}|A|^{5+\delta} \phi^{5+\delta} d V_{g} \leq C \int_{M}|\nabla \phi|^{5+\delta} d V_{g} \quad \forall \phi \in C_{0}^{\infty}(M)
$$

Lemma

For every $\delta>0$ small enough, there exists $C>0$ such that

$$
\int_{M}|A|^{5+\delta} u^{-2-\frac{2 \delta}{3}} \phi^{5+\delta} d V_{g} \leq C \int_{M} u^{-2-\frac{2 \delta}{3}}|\nabla \phi|^{5+\delta} d V_{g} \quad \forall \phi \in C_{0}^{\infty}(M)
$$

Idea of the proof: from Schoen-Simon-Yau (1975) proof

$$
\int_{M}|A|^{p} \psi^{2} \leq C \int_{M}|A|^{p-2}|\nabla \psi|^{2} \quad \forall \psi \in C_{0}^{\infty}(M)
$$

for every $p \in[4,4+\sqrt{8 / n}]$ and for some $C>0$. We test this inequality with $\psi=u^{\alpha} \phi, \phi \in C_{0}^{\infty}(M)$, with u the positive solution to

$$
-\Delta u=|A|^{2} u
$$

and $\alpha<0$. Using this equation and Simons' identity, after some estimates, we get the result.

Step 4: the final estimate

Proof of the stable Bernstein Theorem:

let $x_{0} \in M^{3}$, and let \tilde{r} denotes the distance function from x_{0} with respect to the metric $\widetilde{g}=u^{\frac{4}{3}} g$. We choose

$$
\phi:=\eta(\widetilde{r}),
$$

where $0 \leq \eta \leq 1, \eta=1$ on $[0, R], \eta=0$ on $[2 R, \infty)$ and $\left|\eta^{\prime}\right| \leq \frac{C}{R}$, for some $C, R>0$. From the weighted integral estimate, we have

$$
\begin{aligned}
\int_{M}|A|^{5+\delta} u^{-2-\frac{2 \delta}{3}} \phi^{5+\delta} d V_{g} & \leq C \int_{M} u^{-2-\frac{2 \delta}{3}}|\nabla \phi|_{g}^{5+\delta} d V_{g} \\
& =C \int_{M} u^{-2-\frac{2 \delta}{3}+\frac{2(5+\delta)}{3}}|\widetilde{\nabla} \phi|_{\tilde{g}}^{5+\delta} d V_{g} \\
& \leq \frac{C}{R^{5+\delta}} \int_{B_{2 R}^{\tilde{g}}\left(x_{0}\right)} u^{\frac{4}{3}} d V_{g} \\
& \leq \frac{C}{R^{\delta}},
\end{aligned}
$$

(we used that $|\widetilde{\nabla} \tilde{r}|_{\tilde{g}}=1$). Since $\delta>0$, letting $R \rightarrow \infty$, we get

$$
|A| \equiv 0 \quad \text { on } M^{3},
$$

and this concludes the proof.

- The cases $n=4,5,6$ are open.
- The proof by Chodosh-Li (2021) is based on the non-parabolicity of M^{3} (i.e. M^{3} admits a positive Green's function G for the Laplacian). They perform careful estimates of the quantity:

$$
F(t):=\int_{\Sigma_{t}}|\nabla G|^{2}
$$

where Σ_{t} is the t-level set of G (these are 2 -dimensional). The estimates seem to work only in dimension $n=3$. They finally test the stability inequality derived by Schoen-Simon-Yau with $\psi=\eta(G)$ to get rigidity.

- We used a different approach which seems suitable to be adapted also to other dimensions.
- We think this conformal method can be applied for other problems. For instance, very recently we managed to prove the following:
Theorem [C.-Mastrolia-Monticelli, in preparation]
Let $\left(M^{n}, g\right), n \geq 10$, be a complete critical metric of the functional

$$
\mathfrak{S}^{2}=\int R_{g}^{2} d V_{g}
$$

with finite energy, i.e. $R_{g} \in L^{2}\left(M^{n}\right)$. Then $\left(M^{n}, g\right)$ is scalar flat, and thus a global minimum of the functional \mathfrak{S}^{2}.

This conformal deformation can be applied also in the case of minimal immersion $M^{n} \hookrightarrow\left(X^{n+1}, h\right)$ with finite index, i.e. the number of negative eigenvalues (counted with multiplicity) of the Jacobi operator

$$
\Delta+|A|^{2}+\operatorname{Ric}_{h}(\nu, \nu),
$$

on every compact domain in M (with Dirichlet boundary conditions) is finite (ν is a unit normal vector to M in X).

Remark: stability \Longrightarrow finite (zero) index.
Theorem [C.-Mastrolia-Roncoroni (2022)]
If $\left(X^{n+1}, h\right)$ is a closed $(n+1)$-dimensional manifold with $n \leq 5$ and such that

$$
\mathrm{Sec}_{h} \geq 0 \quad \text { and } \quad \mathrm{Ric}_{h}>0 .
$$

Then every complete, orientable, immersed, minimal hypersurface $M^{n} \hookrightarrow\left(X^{n+1}, h\right)$ with finite index must be compact.

Corollary

Under the assumptions of the previous theorem, there is no complete, orientable, stable minimal hypersurface $M^{n} \hookrightarrow\left(X^{n+1}, h\right)$.

Corollary

Under the assumptions of the previous theorem, there is no complete, orientable, stable minimal hypersurface $M^{n} \hookrightarrow\left(X^{n+1}, h\right)$.

In particular, there is no complete, orientable, stable minimal hypersurface of the round spheres $M^{n} \hookrightarrow\left(\mathbb{S}^{n+1}, g_{\text {std }}\right)$, provided $n \leq 5$.

- If $n=2$: known and follows from Schoen-Yau (1982);
- if $n=3$: known and follows by a recent result by Chodosh-Li-Striker (2022);
- if $n=4,5$: new (?!);
- if $n>5$: open (?!).

Our second result: idea of the proof I

Theorem [C.-Mastrolia-Roncoroni (2022)]

If $\left(X^{n+1}, h\right)$ is a closed $(n+1)$-dimensional manifold with $n \leq 5$ and such that

$$
\mathrm{Sec}_{h} \geq 0 \quad \text { and } \quad \mathrm{Ric}_{h}>0 .
$$

Then every complete, orientable, immersed, minimal hypersurface $M^{n} \hookrightarrow\left(X^{n+1}, h\right)$ with finite index must be compact.

Proof. Suppose, by contradiction, that M is non-compact. Then, there exist $0<u \in C^{\infty}(M)$ and $K \subset M$ compact subset such that

$$
-\Delta u=\left[|A|^{2}+\operatorname{Ric}_{h}(\nu, \nu)\right] u \quad \text { in } M \backslash K .
$$

Let $k>0$ and consider the conformal metric

$$
\tilde{g}=u^{2 k} g,
$$

where g is the induced metric on M. As shown in Fischer-Colbrie (1985), one can construct a minimizing geodesic in the metric $\widetilde{g}=u^{2 k} g, \gamma=\gamma(s):[0, \infty) \rightarrow M \backslash K$, where s is the g-arclength, such that it has infinite length in the metric g.

By the second variation formula (cfr. Elbert-Nelli-Rosenberg (2007))

$$
\begin{aligned}
& (n-1) \int_{0}^{a}\left(\varphi_{s}\right)^{2} d s \geq k(n-3) \int_{0}^{a} \varphi \varphi_{s} \frac{u_{s}}{u} d s \\
& +\frac{k[4-k(n-1)]}{4} \int_{0}^{a} \varphi^{2}\left(\frac{u_{s}}{u}\right)^{2} d s+\int_{0}^{a} \varphi^{2}\left(k R i c_{h}(\nu, \nu)+\sum_{j=2}^{n} R_{1 j 1 j}^{h}\right) d s \\
& +\int_{0}^{a} \varphi^{2}\left(k|A|^{2}-A_{11}^{2}-\sum_{j=2}^{n} A_{1 j}^{2}\right) d s
\end{aligned}
$$

for every smooth function φ such that $\varphi(0)=\varphi(a)=0$ and for every $k>0$. Since $\mathrm{Sec}_{h} \geq 0$ and $\operatorname{Ric}_{h}(\nu, \nu) \geq R_{0}>0$, we obtain

$$
\begin{aligned}
&(n-1) \int_{0}^{a}\left(\varphi_{s}\right)^{2} d s \geq k(n-3) \int_{0}^{a} \varphi \varphi_{s} \frac{u_{s}}{u} d s \\
&+\frac{k[4-k(n-1)]}{4} \int_{0}^{a} \varphi^{2}\left(\frac{u_{s}}{u}\right)^{2} d s \\
&+\int_{0}^{a} \varphi^{2}\left(k R_{0}+k|A|^{2}-A_{11}^{2}-\sum_{j=2}^{n} A_{1 j}^{2}\right) d s .
\end{aligned}
$$

Being A trace-free and choosing $k=\frac{n-1}{n}$, we get

$$
\begin{aligned}
\int_{0}^{a}\left(\varphi_{s}\right)^{2} d s \geq & \frac{n-3}{n} \int_{0}^{a} \varphi \varphi_{s} \frac{u_{s}}{u} d s+\frac{6 n-n^{2}-1}{4 n^{2}} \int_{0}^{a} \varphi^{2}\left(\frac{u_{s}}{u}\right)^{2} d s \\
& +\frac{R_{0}}{n} \int_{0}^{a} \varphi^{2} d s
\end{aligned}
$$

If $n \leq 5$, we have

$$
\frac{6 n-n^{2}-1}{4 n^{2}} \geq \delta_{0}>0
$$

moreover, there exists $C>0$ such that

$$
\frac{n-3}{n} \varphi \varphi_{s} \frac{u_{s}}{u} \geq-\delta_{0} \varphi^{2}\left(\frac{u_{s}}{u}\right)^{2}-C\left(\varphi_{s}\right)^{2}
$$

Therefore, there exists $C>0$ such that

$$
C \int_{0}^{a}\left(\varphi_{s}\right)^{2} d s \geq \frac{R_{0}}{n} \int_{0}^{a} \varphi^{2} d s
$$

for every smooth function φ such that $\varphi(0)=\varphi(a)=0$.

Our second result: idea of the proof IV

Integrating by parts we obtain

$$
\int_{0}^{a}\left(\varphi \varphi_{s} s+C R_{0} \varphi^{2}\right) d s \leq 0
$$

Choosing $\varphi(s)=\sin \left(\pi s a^{-1}\right), s \in[0, a]$ one has

$$
\left(C R_{0}-\frac{\pi^{2}}{a^{2}}\right) \int_{0}^{a} \sin ^{2}\left(\pi s a^{-1}\right) d s \leq 0
$$

i.e.

$$
a^{2} \leq \frac{\pi^{2}}{C R_{0}}
$$

We conclude that the length (in the metric g) of the geodesic $\widetilde{\gamma}(s)$ is finite and this gives a contradiction. Therefore (M^{n}, g) must be compact and this concludes the proof.

Our second result: idea of the proof V

Corollary

Under the assumptions of the previous theorem, there is no complete, orientable, stable minimal hypersurface $M^{n} \hookrightarrow\left(X^{n+1}, h\right)$.

Proof. If M is stable, by the previous Theorem it must be compact. Moreover, there exists $0<u \in C^{\infty}(M)$ such that

$$
-\Delta u=\left[|A|^{2}+\operatorname{Ric}_{h}(\nu, \nu)\right] u \quad \text { in } M .
$$

Integrating over M we get a contradiction, since $\operatorname{Ric}_{h}>0$. Equivalently, one can use $f \equiv 1$ in the stability inequality to get a contradiction.

