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Minimal surfaces in R3

Minimal surface: M2 ⊂ R3 is a critical point of the area functional At , for all
compactly supported variations, i.e.

d

dt

∣∣∣∣
t=0

At = 0 .

Equivalently:

• M2 is minimal ⇐⇒ the mean curvature H ≡ 0;

• M2 is minimal ⇐⇒ M2 can be expressed, locally, as the graph Γ(u), where u
solves the minimal surfaces equation:

div

(
∇u√

1 + |∇u|2

)
= 0 .



Minimal surfaces in R3

Classical examples: planes, catenoids, elicoids.

19th century examples (golden age): Schwarz minimal surfaces, Enneper surface,
Henneberg surface, Bour’s minimal surface, Neovius surface.

Modern examples: Gyroid, Costa’s minimal surface, Chen-Gackstatter surface.



The Bernstein problem I

Theorem [Bernstein, 1914]
Let u ∈ C2(R2) be a solution of

div

(
∇u√

1 + |∇u|2

)
= 0 in R2 .

Then u is an affine function, i.e.

u(x , y) = αx + βy + γ ,

for some α, β, γ ∈ R.

Equivalently

An entire (i.e. defined on the whole plane R2) minimal graph in R3 is necessarily a
plane.

The proof is based on a Liouville-type theorem for elliptic (not uniformly elliptic)
operators, which holds true only in dimension 2.



The Bernstein problem II

Bernstein problem in higher dimension: an entire minimal graph in Rn+1 is
necessarily a hyperplane?

It resisted for a half-century and was solved thanks to the combined effort of:

• Fleming (1965): new proof in the case n = 2;

• De Giorgi (1965): n = 3;

• Almgren (1966): n = 4;

• Simons (1968): n ≤ 7;

Their proofs are not based on Liouville-type theorems but on tools in Geometric
Measure Theory.

Moreover

• Bombieri-De Giorgi-Giusti (1969): for n ≥ 8, there are minimal entire graphs that
are not hyperplanes.



A natural direction of investigation

Two remarks:

• A minimal graph is area-minimizing: i.e. it is not only a critical point of the area
functional, but also a minimum.

This is not true for general minimal hypersurfaces (that are not graphic).

• Area-minimizing implies stability, that is

d2

dt2

∣∣∣∣
t=0

At ≥ 0 ,

for all compactly supported variations.

Stable Bernstein problem: if Mn ↪→ Rn+1 is a complete, orientable, immersed, stable
minimal hypersurface, does M have to be necessarily a hyperplane?



The stable Bernstein problem

Stable Bernstein problem: if Mn ↪→ Rn+1 is a complete, orientable, immersed, stable
minimal hypersurface, does M have to be necessarily a hyperplane?

• True if n = 2: do Carmo-Peng (1979)., Fischer-Colbrie-Schoen (1980), Pogorelov
(1981);

• False if n ≥ 7: if n ≥ 8, Bombieri-De Giorgi-Giusti (1969) constructed non-flat,
orientable, complete, stable, minimal hypersurfaces (graphs) in Rn+1, n ≥ 8.
Moreover, if n ≥ 7, there exist non-flat area minimizing (not graphs) smooth
hypersurfaces constructed by Hardt-Simon (1985).

• Other dimensions? Schoen-Simon-Yau (1975): true if n ≤ 5 and Euclidean
volume growth assumption

Vol(BR) ≤ CRn .

• Further interesting/partial results: Schoen-Yau (1979), do Carmo-Peng (1982),
Bérard (1991), Palmer (1991), Miyaoka (1993), Tanno (1996), Cao-Shen-Zhu
(1997), Shen-Zhu (1998), Chen (2001), Nelli-Soret (2007).

• True if n = 3: Chodosh-Li (2021) and C., Mastrolia, Roncoroni (2022).



The stable Bernstein problem in R4

Theorem [Chodosh-Li (2021) and C.-Mastrolia-Roncoroni (2022)]
A complete, orientable, immersed, stable minimal hypersurface M3 ↪→ R4 is a
hyperplane.

Stable minimal hypersurface: M is minimal iff the mean curvature H ≡ 0; in this case
we say that M is stable if∫

M
|A|2ϕ2 ≤

∫
M
|∇ϕ|2 , for all ϕ ∈ C∞0 (M)

where A = AM denotes the second fundamental form of M.

Remark: stability means non-negativity of the second variation, or, equivalently,
non-positivity of the so-called Jacobi operator

∆ + |A|2 .



The stable Bernstein problem in R4

Theorem [Chodosh-Li (2021) and C.-Mastrolia-Roncoroni (2022)]
A complete, orientable, immersed, stable minimal hypersurface M3 ↪→ R4 is a
hyperplane.

Main idea: use a weighted volume comparison for a suitable conformal metric,
together with a new weighted integral estimate.

Inspiring papers: Schoen-Simon-Yau (1975), Fischer-Colbrie (1985),
Elbert-Nelli-Rosenberg (2007).

Before going into the proof, I will give you a 3-slides complete proof of
Schoen-Simon-Yau (1975) result on stable minimal hypersurface Mn ↪→ Rn+1, n ≤ 5,
satisfying the volume assumption

Vol(BR) ≤ CRn .



Proof of Schoen-Simon-Yau (1975) I

Take a complete, orientable, immersed, stable minimal hypersurface Mn ↪→ Rn+1. We
have ∫

M
|A|2ϕ2 ≤

∫
M
|∇ϕ|2 , for all ϕ ∈ C∞0 (M).

We test it with ϕ = |A|1+qψ, q ≥ 0, with ψ ∈ C∞0 (M), obtaining∫
M
|A|4+2qψ2 ≤ [(1 + q)2 + ε]

∫
M
|A|2q |∇|A||2ψ2 +

1 + q

ε

∫
M
|A|2+2q |∇ψ|2,

for every ε > 0, where we used Young’s inequality. On the other hand, using the
Codazzi equation

∇kAij = ∇jAik

and Gauss equation, we get the well known Simons’ identity for minimal hypersurfaces
in Rn+1

1

2
∆|A|2 = |∇A|2 − |A|4.

Moreover, since A is a Codazzi tensor, we have the improved Kato’s inequality

|∇A|2 ≥
n + 2

n
|∇|A||2.

Combining these, we obtain

|A|∆|A|+ |A|4 ≥
2

n
|∇|A||2.



Proof of Schoen-Simon-Yau (1975) II

Multiplying it by |A|2qψ2 and integrating by parts, we get(
2

n
+ 1 + 2q − ε

)∫
M
|A|2q |∇|A||2ψ2 ≤

∫
M
|A|4+2qψ2 +

1

ε

∫
M
|A|2+2q |∇ψ|2

for every ε > 0, where we used again Young’s inequality. Since q ≥ 0, for ε > 0
sufficiently small, combining these two estimates we obtain{

1− [(1 + q)2 + ε]

(
2

n
+ 1 + 2q − ε

)−1
}∫

M
|A|4+2qψ2 ≤ C

∫
M
|A|2+2q |∇ψ|2.

Let q := p−4
2

. For ε > 0 small enough, we have

1− [(1 + q)2 + ε]

(
2

n
+ 1 + 2q − ε

)−1

> 0

if p ∈ [4, 4 +
√

8/n] and we finally obtain∫
M
|A|pψ2 ≤ C

∫
M
|A|p−2|∇ψ|2 ∀ψ ∈ C∞0 (M).

Taking ψ = φp/2, by Holder’s inequality, we get∫
M
|A|pφp ≤ C

∫
M
|∇φ|p ∀φ ∈ C∞0 (M)

for all p ∈ [4, 4 +
√

8/n].



Proof of Schoen-Simon-Yau (1975) III

∫
M
|A|pφp ≤ C

∫
M
|∇φ|p ∀φ ∈ C∞0 (M)

for all p ∈ [4, 4 +
√

8/n]. In particular, if n ≤ 5, we can take p = 5 + δ, for some
δ > 0 small. Let x0 ∈ Mn, and let r denotes the distance function from x0. We choose

φ := η(r) ,

where 0 ≤ η ≤ 1, η = 1 on [0,R], η = 0 on [2R,∞) and |η′| ≤ C
R

, for some C ,R > 0.
Plugging in the previous estimate, form every R > 0, we obtain∫

M
|A|5+δη5+δ ≤ C

∫
B2R\BR

|∇η|5+δ ≤
C

R5+δ
Vol(B2R) ≤

C

Rδ

where we used the Euclidean volume growth assumption. Since δ > 0, letting
R →∞, we get

|A| ≡ 0 on Mn,

and this concludes the proof.



Proof of the stable Bernstein problem in R4

Theorem [Chodosh-Li (2021) and C.-Mastrolia-Roncoroni (2022)]
A complete, orientable, immersed, stable minimal hypersurface M3 ↪→ R4 is a
hyperplane.

Idea of the proof:

• Step 1: construct g̃ conformal to g such that

Ric2,f
g̃

:= Ricg̃ +∇2
g̃ f −

1

2
df ⊗ df ≥ 0 .

• Step 2: prove that g̃ is complete.

• Step 3: we obtain a weighted Bishop-Gromov volume estimate:

Volf

(
B g̃
R

)
:=

∫
B
g̃
R

e−f dVg̃ ≤ CR3+2 = CR5 . (1)

• Step 4: prove a weighted integral estimate as in SSY

• Step 5: use a cutoff function φ = η(r̃) to conclude that

|A| ≡ 0 on M3.



Step 1: the conformal change of the metric

It is well-known that the stability of Mn ↪→ Rn+1 implies the existence of
0 < u ∈ C∞(M) satisfying

−∆gu = |A|2gu in M,

where g denotes the induced metric on M.

Let k > 0 and consider the conformal metric

g̃ = u2kg .

Lemma
Let f = k(n − 2) log u. Then the Ricci tensor of the metric g̃ satisfies

Ricg̃ +∇2
g̃ f −

1− k(n − 2)

k(n − 2)2
df ⊗ df ≥

(
k −

n − 1

n

)
|A|2gg .

In particular, if n = 3 and k = 2
3

, then the 2-Bakry-Emery-Ricci tensor satisfies

Ric2,f
g̃

:= Ricg̃ +∇2
g̃ f −

1

2
df ⊗ df ≥ 0 .



Sketch of the proof: since f = k(n − 2) log u, we have

df = k(n − 2)
du

u
and ∇2

g f = k(n − 2)

(
∇2

gu

u
−

du ⊗ du

u2

)
,

which implies

∆g f = k(n − 2)

(
∆gu

u
−
|∇gu|2g

u2

)
.

On the other hand, from the standard formulas for a conformal change of the metric
g̃ = e2ϕg , 0 < ϕ ∈ C∞(M), we get

Ricg̃ = Ricg − (n − 2)
(
∇2ϕ− dϕ⊗ dϕ

)
−
[
∆gϕ+ (n − 2)|∇gϕ|2g

]
g ,

and
∇2

g̃ f = ∇2
g f − (df ⊗ dϕ) + g(∇g f ,∇gϕ)g .

In our case ϕ = k log u and u solves −∆gu = |A|2gu, thus

Ricg̃ +∇2
g̃ f = Ricg −

df ⊗ df

n − 2
+ k|A|2gg +

|∇g f |2g
k(n − 2)

g .



From Cauchy-Schwarz inequality we have

|∇g f |2gg ≥ df ⊗ df

and from Gauss equation in the minimal case we know that

Ricg = −A2

and since A is traceless we also have the inequality

A2 ≤
n − 1

n
|A|2gg .

Substituting in

Ricg̃ +∇2
g̃ f = Ricg −

df ⊗ df

n − 2
+ k|A|2gg +

|∇g f |2g
k(n − 2)

g ,

we conclude

Ricg̃ +∇2
g̃ f −

1− k(n − 2)

k(n − 2)2
df ⊗ df ≥

(
k −

n − 1

n

)
|A|2gg .



Step 2: completeness of g̃

From now on, we take

n = 3 , k =
2

3
,

and 0 < u ∈ C∞(M) solution of

−∆gu = |A|2gu in M.

Lemma
The metric g̃ = u

4
3 g is complete.

Sketch of the proof: as shown in Fischer-Colbrie (1985), one can construct a
minimizing geodesic in the metric g̃ = u2kg , γ = γ(s), where s is the g−arclength.
By construction, the completeness of g̃ is equivalent to prove that γ has infinite
g̃−length, i.e. ∫

γ
ds̃ =

∫ +∞

0
uk (γ(s)) ds = +∞ .

Since γ is minimizing, by the second variation formula∫ ∞
0

[
(n − 1)(ϕs̃)2 − R̃11ϕ

2
]
ds̃ ≥ 0 , ∀ϕ ∈ C∞0 (0,+∞)

where R̃11 denotes the g̃−Ricci curvature in the direction γs̃ .



Using the formula for the conformal change of the Ricci curvature, some integration
by parts (cfr. Elbert-Nelli-Rosenberg (2007)) and controlling the |A|2 terms, we get

(n − 1)

∫ +∞

0
(ϕs)2u−k ds ≥ 2k(n − 2)

∫ +∞

0
ϕϕsu

−k−1us ds

+ k [1− k(n − 2)]

∫ +∞

0
ϕ2u−k−2(us)2 ds ,

for n ≥ 3, for every ϕ ∈ C∞0 (0,+∞) and for every k ≥ n−1
n

.

Now we choose ϕ = ukψ, with ψ ∈ C∞0 (0,+∞), we apply Young inequality, we
manipulate and we obtain, assuming k < 1

0 ≤
[
k(t − 1)2

1− k
− 2t + (n − 1)

] ∫ +∞

0
uk (ψs)2 ds − 2t

∫ +∞

0
ukψψss ds,

for every t > 1. If n = 3, k = n−1
n

= 2
3

and t = 3
2

we have that

k(t − 1)2

1− k
− 2t + (n − 1) < 0 ,

hence,

0 ≤ −
∫ +∞

0
u

2
3 (ψs)2 ds − 6

∫ +∞

0
u

2
3 ψψss ds , ∀ψ ∈ C∞0 (0,+∞).



Hence,

0 ≤ −
∫ +∞

0
u

2
3 (ψs)2 ds − 6

∫ +∞

0
u

2
3 ψψss ds , ∀ψ ∈ C∞0 (0,+∞).

Finally, we choose ψ = sη, where η = 1 in [0,R], η = 0 in [2R,∞), 0 ≤ η ≤ 1 such
that

|ηs | ≤
C

R
and |ηss | ≤

C

R2
.

Then ∫ R

0
u

2
3 ds ≤

∫ ∞
0

u
2
3 η2 ds ≤ C

∫ ∞
R

u
2
3 ds ,

and we conclude that ∫ +∞

0
u

2
3 ds = +∞ .

I.e. the metric g̃ = u
4
3 g is complete.



Step 3: weighted volume estimate

The two previous Lemmas imply that the metric g̃ = u
4
3 g is complete and has

non-negative 2-Bakry-Emery-Ricci curvature. Hence we obtain a weighted

Bishop-Gromov volume estimate for a geodesic ball B g̃
R(x0).

Corollary
Let x0 ∈ M3. Then, for every R > 0, there exists C > 0 such that

Volf

(
B g̃
R(x0)

)
:=

∫
B
g̃
R

(x0)
e−f dVg̃ ≤ CR5 ,

where f = 2
3

log u. Equivalently, in terms of u and the volume form of g ,∫
B
g̃
R

(x0)
u

4
3 dVg ≤ CR5 .

Follows from well-known comparison results e.g. in Qian (1997), Lott (2003),
Bakry-Qian (2005), Wei-Wylie (2009).



Step 4: weighted integral estimate

We have seen that Schoen-Simon-Yau proved the following estimate∫
M
|A|5+δφ5+δ dVg ≤ C

∫
M
|∇φ|5+δ dVg ∀φ ∈ C∞0 (M).

Lemma
For every δ > 0 small enough, there exists C > 0 such that∫

M
|A|5+δu−2− 2δ

3 φ5+δ dVg ≤ C

∫
M
u−2− 2δ

3 |∇φ|5+δ dVg ∀φ ∈ C∞0 (M).

Idea of the proof: from Schoen-Simon-Yau (1975) proof∫
M
|A|pψ2 ≤ C

∫
M
|A|p−2|∇ψ|2 ∀ψ ∈ C∞0 (M),

for every p ∈ [4, 4 +
√

8/n] and for some C > 0. We test this inequality with
ψ = uαφ, φ ∈ C∞0 (M), with u the positive solution to

−∆u = |A|2u

and α < 0. Using this equation and Simons’ identity, after some estimates, we get the
result.



Step 4: the final estimate

Proof of the stable Bernstein Theorem:

let x0 ∈ M3, and let r̃ denotes the distance function from x0 with respect to the

metric g̃ = u
4
3 g . We choose

φ := η(r̃) ,

where 0 ≤ η ≤ 1, η = 1 on [0,R], η = 0 on [2R,∞) and |η′| ≤ C
R

, for some C ,R > 0.
From the weighted integral estimate, we have∫

M
|A|5+δu−2− 2δ

3 φ5+δ dVg ≤ C

∫
M
u−2− 2δ

3 |∇φ|5+δ
g dVg

= C

∫
M
u−2− 2δ

3
+

2(5+δ)
3 |∇̃φ|5+δ

g̃
dVg

≤
C

R5+δ

∫
B
g̃
2R

(x0)
u

4
3 dVg

≤
C

Rδ
,

(we used that |∇̃r̃ |g̃ = 1). Since δ > 0, letting R →∞, we get

|A| ≡ 0 on M3,

and this concludes the proof.



Comments and remarks

• The cases n = 4, 5, 6 are open.

• The proof by Chodosh-Li (2021) is based on the non-parabolicity of M3 (i.e. M3

admits a positive Green’s function G for the Laplacian). They perform careful
estimates of the quantity:

F (t) :=

∫
Σt

|∇G |2 ,

where Σt is the t−level set of G (these are 2−dimensional). The estimates seem
to work only in dimension n = 3. They finally test the stability inequality derived
by Schoen-Simon-Yau with ψ = η(G) to get rigidity.

• We used a different approach which seems suitable to be adapted also to other
dimensions.

• We think this conformal method can be applied for other problems. For instance,
very recently we managed to prove the following:

Theorem [C.-Mastrolia-Monticelli, in preparation]

Let (Mn, g), n ≥ 10, be a complete critical metric of the functional

S2 =

∫
R2
gdVg

with finite energy, i.e. Rg ∈ L2(Mn). Then (Mn, g) is scalar flat, and thus a
global minimum of the functional S2.



Our second result I

This conformal deformation can be applied also in the case of minimal immersion
Mn ↪→ (X n+1, h) with finite index, i.e. the number of negative eigenvalues (counted
with multiplicity) of the Jacobi operator

∆ + |A|2 + Rich(ν, ν) ,

on every compact domain in M (with Dirichlet boundary conditions) is finite (ν is a
unit normal vector to M in X ).

Remark: stability =⇒ finite (zero) index.

Theorem [C.-Mastrolia-Roncoroni (2022)]
If (X n+1, h) is a closed (n + 1)−dimensional manifold with n ≤ 5 and such that

Sech ≥ 0 and Rich > 0 .

Then every complete, orientable, immersed, minimal hypersurface Mn ↪→ (X n+1, h)
with finite index must be compact.

Corollary
Under the assumptions of the previous theorem, there is no complete, orientable,
stable minimal hypersurface Mn ↪→ (X n+1, h).



Our second result II

Corollary
Under the assumptions of the previous theorem, there is no complete, orientable,
stable minimal hypersurface Mn ↪→ (X n+1, h).

In particular, there is no complete, orientable, stable minimal hypersurface of the
round spheres Mn ↪→ (Sn+1, gstd), provided n ≤ 5.

• If n = 2: known and follows from Schoen-Yau (1982);

• if n = 3: known and follows by a recent result by Chodosh-Li-Striker (2022);

• if n = 4, 5: new (?!);

• if n > 5: open (?!).



Our second result: idea of the proof I

Theorem [C.-Mastrolia-Roncoroni (2022)]
If (X n+1, h) is a closed (n + 1)−dimensional manifold with n ≤ 5 and such that

Sech ≥ 0 and Rich > 0 .

Then every complete, orientable, immersed, minimal hypersurface Mn ↪→ (X n+1, h)
with finite index must be compact.

Proof. Suppose, by contradiction, that M is non-compact. Then, there exist
0 < u ∈ C∞(M) and K ⊂ M compact subset such that

−∆u =
[
|A|2 + Rich(ν, ν)

]
u in M \ K .

Let k > 0 and consider the conformal metric

g̃ = u2kg ,

where g is the induced metric on M. As shown in Fischer-Colbrie (1985), one can
construct a minimizing geodesic in the metric g̃ = u2kg , γ = γ(s) : [0,∞)→ M \ K ,
where s is the g−arclength, such that it has infinite length in the metric g .



Our second result: idea of the proof II

By the second variation formula (cfr. Elbert-Nelli-Rosenberg (2007))

(n − 1)

∫ a

0
(ϕs)2 ds ≥ k(n − 3)

∫ a

0
ϕϕs

us

u
ds

+
k [4− k(n − 1)]

4

∫ a

0
ϕ2
(us
u

)2
ds +

∫ a

0
ϕ2

kRich(ν, ν) +
n∑

j=2

Rh
1j1j

 ds

+

∫ a

0
ϕ2

k|A|2 − A2
11 −

n∑
j=2

A2
1j

 ds,

for every smooth function ϕ such that ϕ(0) = ϕ(a) = 0 and for every k > 0. Since
Sech ≥ 0 and Rich(ν, ν) ≥ R0 > 0, we obtain

(n − 1)

∫ a

0
(ϕs)2 ds ≥ k(n − 3)

∫ a

0
ϕϕs

us

u
ds

+
k [4− k(n − 1)]

4

∫ a

0
ϕ2
(us
u

)2
ds

+

∫ a

0
ϕ2

kR0 + k|A|2 − A2
11 −

n∑
j=2

A2
1j

 ds.



Our second result: idea of the proof III

Being A trace-free and choosing k = n−1
n

, we get∫ a

0
(ϕs)2 ds ≥

n − 3

n

∫ a

0
ϕϕs

us

u
ds +

6n − n2 − 1

4n2

∫ a

0
ϕ2
(us
u

)2
ds

+
R0

n

∫ a

0
ϕ2 ds.

If n ≤ 5, we have
6n − n2 − 1

4n2
≥ δ0 > 0,

moreover, there exists C > 0 such that

n − 3

n
ϕϕs

us

u
≥ −δ0ϕ

2
(us
u

)2
− C(ϕs)2.

Therefore, there exists C > 0 such that

C

∫ a

0
(ϕs)2 ds ≥

R0

n

∫ a

0
ϕ2 ds

for every smooth function ϕ such that ϕ(0) = ϕ(a) = 0.



Our second result: idea of the proof IV

Integrating by parts we obtain∫ a

0

(
ϕϕss + CR0ϕ

2
)
ds ≤ 0.

Choosing ϕ(s) = sin(πs a−1), s ∈ [0, a] one has(
CR0 −

π2

a2

)∫ a

0
sin2(πs a−1)ds ≤ 0

i.e.

a2 ≤
π2

CR0
.

We conclude that the length (in the metric g) of the geodesic γ̃(s) is finite and this
gives a contradiction. Therefore (Mn, g) must be compact and this concludes the
proof.



Our second result: idea of the proof V

Corollary
Under the assumptions of the previous theorem, there is no complete, orientable,
stable minimal hypersurface Mn ↪→ (X n+1, h).

Proof. If M is stable, by the previous Theorem it must be compact. Moreover, there
exists 0 < u ∈ C∞(M) such that

−∆u =
[
|A|2 + Rich(ν, ν)

]
u in M.

Integrating over M we get a contradiction, since Rich > 0. Equivalently, one can use
f ≡ 1 in the stability inequality to get a contradiction.
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